dockerfile/examples/openssl/openssl-3.2.1-src/test/helpers/noisydgrambio.c

395 lines
12 KiB
C

/*
* Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/bio.h>
#include "quictestlib.h"
#include "../testutil.h"
#define MSG_DATA_LEN_MAX 1472
struct noisy_dgram_st {
uint64_t this_dgram;
BIO_MSG msg;
uint64_t reinject_dgram;
int backoff;
};
static long noisy_dgram_ctrl(BIO *bio, int cmd, long num, void *ptr)
{
long ret;
BIO *next = BIO_next(bio);
if (next == NULL)
return 0;
switch (cmd) {
case BIO_CTRL_DUP:
ret = 0L;
break;
case BIO_CTRL_NOISE_BACK_OFF: {
struct noisy_dgram_st *data;
data = BIO_get_data(bio);
if (!TEST_ptr(data))
return 0;
data->backoff = 1;
ret = 1;
break;
}
default:
ret = BIO_ctrl(next, cmd, num, ptr);
break;
}
return ret;
}
static int noisy_dgram_sendmmsg(BIO *bio, BIO_MSG *msg, size_t stride,
size_t num_msg, uint64_t flags,
size_t *msgs_processed)
{
BIO *next = BIO_next(bio);
if (next == NULL)
return 0;
/*
* We only introduce noise when receiving messages. We just pass this on
* to the underlying BIO.
*/
return BIO_sendmmsg(next, msg, stride, num_msg, flags, msgs_processed);
}
/* 1 in NOISE_RATE datagrams will be noisy. With a value of 5 that is 20% */
#define NOISE_RATE 5
/*
* We have 3 different types of noise: drop, duplicate and delay
* Each of these have equal probability.
*/
#define NOISE_TYPE_DROP 0
#define NOISE_TYPE_DUPLICATE 1
#define NOISE_TYPE_DELAY 2
#define NOISE_TYPE_BITFLIPS 3
#define NUM_NOISE_TYPES 4
/*
* When a duplicate occurs we reinject the new datagram after up to
* MAX_DGRAM_REINJECT datagrams have been sent. A reinject of 1 means that the
* duplicate follows immediately after the original datagram. A reinject of 4
* means that original datagram plus 3 other datagrams are sent before the
* reinjected datagram is inserted.
* This also controls when a delay (not a duplicate) occurs. In that case
* we add 1 to the number because there is no point in skipping the current
* datagram only to immediately reinject it in the next datagram.
*/
#define MAX_DGRAM_REINJECT 4
static void get_noise(int long_header, uint64_t *reinject, int *should_drop,
uint16_t *flip, size_t *flip_offset)
{
uint32_t type;
*flip = 0;
if (test_random() % NOISE_RATE != 0) {
*reinject = 0;
*should_drop = 0;
return;
}
type = test_random() % NUM_NOISE_TYPES;
/*
* Of noisy datagrams, 25% drop, 25% duplicate, 25% delay, 25% flip bits
* A duplicated datagram keeps the current datagram and reinjects a new
* identical one after up to MAX_DGRAM_DELAY datagrams have been sent.
* A delayed datagram is implemented as both a reinject and a drop, i.e. an
* identical datagram is reinjected after the given number of datagrams have
* been sent and the current datagram is dropped.
*/
*should_drop = (type == NOISE_TYPE_DROP || type == NOISE_TYPE_DELAY);
/*
* Where a duplicate occurs we reinject the copy of the datagram up to
* MAX_DGRAM_DELAY datagrams later
*/
*reinject = (type == NOISE_TYPE_DUPLICATE || type == NOISE_TYPE_DELAY)
? (uint64_t)((test_random() % MAX_DGRAM_REINJECT) + 1)
: 0;
/*
* No point in reinjecting after 1 datagram if the current datagram is also
* dropped (i.e. this is a delay not a duplicate), so we reinject after an
* extra datagram in that case
*/
*reinject += type == NOISE_TYPE_DELAY;
/* flip some bits in the header */
if (type == NOISE_TYPE_BITFLIPS) {
/* we flip at most 8 bits of the 16 bit value at once */
*flip = (test_random() % 255 + 1) << (test_random() % 8);
/*
* 25/50 bytes of guesstimated header size (it depends on CID length)
* It does not matter much if it is overestimated.
*/
*flip_offset = test_random() % (25 * (1 + long_header));
}
}
static void flip_bits(unsigned char *msg, size_t msg_len, uint16_t flip,
size_t flip_offset)
{
if (flip == 0)
return;
/* None of these border conditions should happen but check them anyway */
if (msg_len < 2)
return;
if (msg_len < flip_offset + 2)
flip_offset = msg_len - 2;
#ifdef OSSL_NOISY_DGRAM_DEBUG
printf("**Flipping bits in a datagram at offset %u\n",
(unsigned int)flip_offset);
BIO_dump_fp(stdout, msg, msg_len);
printf("\n");
#endif
msg[flip_offset] ^= flip >> 8;
msg[flip_offset + 1] ^= flip & 0xff;
}
static int noisy_dgram_recvmmsg(BIO *bio, BIO_MSG *msg, size_t stride,
size_t num_msg, uint64_t flags,
size_t *msgs_processed)
{
BIO *next = BIO_next(bio);
size_t i, j, data_len = 0, msg_cnt = 0;
BIO_MSG *thismsg;
struct noisy_dgram_st *data;
if (!TEST_ptr(next))
return 0;
data = BIO_get_data(bio);
if (!TEST_ptr(data))
return 0;
/*
* For simplicity we assume that all elements in the msg array have the
* same data_len. They are not required to by the API, but it would be quite
* strange for that not to be the case - and our code that calls
* BIO_recvmmsg does do this (which is all that is important for this test
* code). We test the invariant here.
*/
for (i = 0; i < num_msg; i++) {
if (i == 0) {
data_len = msg[i].data_len;
if (!TEST_size_t_le(data_len, MSG_DATA_LEN_MAX))
return 0;
} else if (!TEST_size_t_eq(msg[i].data_len, data_len)) {
return 0;
}
}
if (!BIO_recvmmsg(next, msg, stride, num_msg, flags, msgs_processed))
return 0;
#ifdef OSSL_NOISY_DGRAM_DEBUG
printf("Pre-filter datagram list:\n");
for (i = 0; i < *msgs_processed; i++) {
printf("Pre-filter Datagram:\n");
BIO_dump_fp(stdout, msg[i].data, msg[i].data_len);
printf("\n");
}
printf("End of pre-filter datagram list\nApplying noise filters:\n");
#endif
msg_cnt = *msgs_processed;
/* Introduce noise */
for (i = 0, thismsg = msg;
i < msg_cnt;
i++, thismsg++, data->this_dgram++) {
uint64_t reinject;
int should_drop;
uint16_t flip;
size_t flip_offset;
/* If we have a message to reinject then insert it now */
if (data->reinject_dgram > 0
&& data->reinject_dgram == data->this_dgram) {
if (msg_cnt < num_msg) {
/* Make space for the injected message */
for (j = msg_cnt; j > i; j--) {
if (!bio_msg_copy(&msg[j], &msg[j - 1]))
return 0;
}
if (!bio_msg_copy(thismsg, &data->msg))
return 0;
msg_cnt++;
data->reinject_dgram = 0;
#ifdef OSSL_NOISY_DGRAM_DEBUG
printf("**Injecting a datagram\n");
BIO_dump_fp(stdout, thismsg->data, thismsg->data_len);
printf("\n");
#endif
continue;
} /* else we have no space for the injection, so just drop it */
data->reinject_dgram = 0;
}
get_noise(/* long header */ (((uint8_t *)thismsg->data)[0] & 0x80) != 0,
&reinject, &should_drop, &flip, &flip_offset);
if (data->backoff) {
/*
* We might be asked to back off on introducing too much noise if
* there is a danger that the connection will fail. In that case
* we always ensure that the next datagram does not get dropped so
* that the connection always survives. After that we can resume
* with normal noise
*/
#ifdef OSSL_NOISY_DGRAM_DEBUG
printf("**Back off applied\n");
#endif
should_drop = 0;
flip = 0;
data->backoff = 0;
}
flip_bits(thismsg->data, thismsg->data_len, flip, flip_offset);
/*
* We ignore reinjection if a message is already waiting to be
* reinjected
*/
if (reinject > 0 && data->reinject_dgram == 0) {
/*
* Both duplicated and delayed datagrams get reintroduced after the
* delay period. Datagrams that are delayed only (not duplicated)
* will also have the current copy of the datagram dropped (i.e
* should_drop below will be true).
*/
if (!bio_msg_copy(&data->msg, thismsg))
return 0;
data->reinject_dgram = data->this_dgram + reinject;
#ifdef OSSL_NOISY_DGRAM_DEBUG
printf("**Scheduling a reinject after %u messages%s\n",
(unsigned int)reinject, should_drop ? "" : "(duplicating)");
BIO_dump_fp(stdout, thismsg->data, thismsg->data_len);
printf("\n");
#endif
}
if (should_drop) {
#ifdef OSSL_NOISY_DGRAM_DEBUG
printf("**Dropping a datagram\n");
BIO_dump_fp(stdout, thismsg->data, thismsg->data_len);
printf("\n");
#endif
for (j = i + 1; j < msg_cnt; j++) {
if (!bio_msg_copy(&msg[j - 1], &msg[j]))
return 0;
}
msg_cnt--;
}
}
#ifdef OSSL_NOISY_DGRAM_DEBUG
printf("End of noise filters\nPost-filter datagram list:\n");
for (i = 0; i < msg_cnt; i++) {
printf("Post-filter Datagram:\n");
BIO_dump_fp(stdout, msg[i].data, msg[i].data_len);
printf("\n");
}
printf("End of post-filter datagram list\n");
#endif
*msgs_processed = msg_cnt;
if (msg_cnt == 0) {
ERR_raise(ERR_LIB_BIO, BIO_R_NON_FATAL);
return 0;
}
return 1;
}
static void data_free(struct noisy_dgram_st *data)
{
if (data == NULL)
return;
OPENSSL_free(data->msg.data);
BIO_ADDR_free(data->msg.peer);
BIO_ADDR_free(data->msg.local);
OPENSSL_free(data);
}
static int noisy_dgram_new(BIO *bio)
{
struct noisy_dgram_st *data = OPENSSL_zalloc(sizeof(*data));
if (!TEST_ptr(data))
return 0;
data->msg.data = OPENSSL_malloc(MSG_DATA_LEN_MAX);
data->msg.peer = BIO_ADDR_new();
data->msg.local = BIO_ADDR_new();
if (data->msg.data == NULL
|| data->msg.peer == NULL
|| data->msg.local == NULL) {
data_free(data);
return 0;
}
BIO_set_data(bio, data);
BIO_set_init(bio, 1);
return 1;
}
static int noisy_dgram_free(BIO *bio)
{
data_free(BIO_get_data(bio));
BIO_set_data(bio, NULL);
BIO_set_init(bio, 0);
return 1;
}
/* Choose a sufficiently large type likely to be unused for this custom BIO */
#define BIO_TYPE_NOISY_DGRAM_FILTER (0x80 | BIO_TYPE_FILTER)
static BIO_METHOD *method_noisy_dgram = NULL;
/* Note: Not thread safe! */
const BIO_METHOD *bio_f_noisy_dgram_filter(void)
{
if (method_noisy_dgram == NULL) {
method_noisy_dgram = BIO_meth_new(BIO_TYPE_NOISY_DGRAM_FILTER,
"Nosiy datagram filter");
if (method_noisy_dgram == NULL
|| !BIO_meth_set_ctrl(method_noisy_dgram, noisy_dgram_ctrl)
|| !BIO_meth_set_sendmmsg(method_noisy_dgram, noisy_dgram_sendmmsg)
|| !BIO_meth_set_recvmmsg(method_noisy_dgram, noisy_dgram_recvmmsg)
|| !BIO_meth_set_create(method_noisy_dgram, noisy_dgram_new)
|| !BIO_meth_set_destroy(method_noisy_dgram, noisy_dgram_free))
return NULL;
}
return method_noisy_dgram;
}
void bio_f_noisy_dgram_filter_free(void)
{
BIO_meth_free(method_noisy_dgram);
}