dockerfile/examples/openssl/openssl-3.2.1-src/ssl/quic/quic_channel.c

3804 lines
127 KiB
C

/*
* Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/rand.h>
#include <openssl/err.h>
#include "internal/quic_channel.h"
#include "internal/quic_error.h"
#include "internal/quic_rx_depack.h"
#include "../ssl_local.h"
#include "quic_channel_local.h"
/*
* NOTE: While this channel implementation currently has basic server support,
* this functionality has been implemented for internal testing purposes and is
* not suitable for network use. In particular, it does not implement address
* validation, anti-amplification or retry logic.
*
* TODO(QUIC SERVER): Implement address validation and anti-amplification
* TODO(QUIC SERVER): Implement retry logic
*/
#define INIT_DCID_LEN 8
#define INIT_CRYPTO_RECV_BUF_LEN 16384
#define INIT_CRYPTO_SEND_BUF_LEN 16384
#define INIT_APP_BUF_LEN 8192
/*
* Interval before we force a PING to ensure NATs don't timeout. This is based
* on the lowest commonly seen value of 30 seconds as cited in RFC 9000 s.
* 10.1.2.
*/
#define MAX_NAT_INTERVAL (ossl_ms2time(25000))
/*
* Our maximum ACK delay on the TX side. This is up to us to choose. Note that
* this could differ from QUIC_DEFAULT_MAX_DELAY in future as that is a protocol
* value which determines the value of the maximum ACK delay if the
* max_ack_delay transport parameter is not set.
*/
#define DEFAULT_MAX_ACK_DELAY QUIC_DEFAULT_MAX_ACK_DELAY
static void ch_save_err_state(QUIC_CHANNEL *ch);
static void ch_rx_pre(QUIC_CHANNEL *ch);
static int ch_rx(QUIC_CHANNEL *ch, int channel_only);
static int ch_tx(QUIC_CHANNEL *ch);
static void ch_tick(QUIC_TICK_RESULT *res, void *arg, uint32_t flags);
static int ch_tick_tls(QUIC_CHANNEL *ch, int channel_only);
static void ch_rx_handle_packet(QUIC_CHANNEL *ch, int channel_only);
static OSSL_TIME ch_determine_next_tick_deadline(QUIC_CHANNEL *ch);
static int ch_retry(QUIC_CHANNEL *ch,
const unsigned char *retry_token,
size_t retry_token_len,
const QUIC_CONN_ID *retry_scid);
static void ch_cleanup(QUIC_CHANNEL *ch);
static int ch_generate_transport_params(QUIC_CHANNEL *ch);
static int ch_on_transport_params(const unsigned char *params,
size_t params_len,
void *arg);
static int ch_on_handshake_alert(void *arg, unsigned char alert_code);
static int ch_on_handshake_complete(void *arg);
static int ch_on_handshake_yield_secret(uint32_t enc_level, int direction,
uint32_t suite_id, EVP_MD *md,
const unsigned char *secret,
size_t secret_len,
void *arg);
static int ch_on_crypto_recv_record(const unsigned char **buf,
size_t *bytes_read, void *arg);
static int ch_on_crypto_release_record(size_t bytes_read, void *arg);
static int crypto_ensure_empty(QUIC_RSTREAM *rstream);
static int ch_on_crypto_send(const unsigned char *buf, size_t buf_len,
size_t *consumed, void *arg);
static OSSL_TIME get_time(void *arg);
static uint64_t get_stream_limit(int uni, void *arg);
static int rx_late_validate(QUIC_PN pn, int pn_space, void *arg);
static void rxku_detected(QUIC_PN pn, void *arg);
static int ch_retry(QUIC_CHANNEL *ch,
const unsigned char *retry_token,
size_t retry_token_len,
const QUIC_CONN_ID *retry_scid);
static void ch_update_idle(QUIC_CHANNEL *ch);
static int ch_discard_el(QUIC_CHANNEL *ch,
uint32_t enc_level);
static void ch_on_idle_timeout(QUIC_CHANNEL *ch);
static void ch_update_idle(QUIC_CHANNEL *ch);
static void ch_update_ping_deadline(QUIC_CHANNEL *ch);
static void ch_stateless_reset(QUIC_CHANNEL *ch);
static void ch_raise_net_error(QUIC_CHANNEL *ch);
static void ch_on_terminating_timeout(QUIC_CHANNEL *ch);
static void ch_start_terminating(QUIC_CHANNEL *ch,
const QUIC_TERMINATE_CAUSE *tcause,
int force_immediate);
static int ch_stateless_reset_token_handler(const unsigned char *data, size_t datalen, void *arg);
static void ch_default_packet_handler(QUIC_URXE *e, void *arg);
static int ch_server_on_new_conn(QUIC_CHANNEL *ch, const BIO_ADDR *peer,
const QUIC_CONN_ID *peer_scid,
const QUIC_CONN_ID *peer_dcid);
static void ch_on_txp_ack_tx(const OSSL_QUIC_FRAME_ACK *ack, uint32_t pn_space,
void *arg);
static void ch_rx_handle_version_neg(QUIC_CHANNEL *ch, OSSL_QRX_PKT *pkt);
static void ch_raise_version_neg_failure(QUIC_CHANNEL *ch);
DEFINE_LHASH_OF_EX(QUIC_SRT_ELEM);
static int gen_rand_conn_id(OSSL_LIB_CTX *libctx, size_t len, QUIC_CONN_ID *cid)
{
if (len > QUIC_MAX_CONN_ID_LEN)
return 0;
cid->id_len = (unsigned char)len;
if (RAND_bytes_ex(libctx, cid->id, len, len * 8) != 1) {
ERR_raise(ERR_LIB_SSL, ERR_R_RAND_LIB);
cid->id_len = 0;
return 0;
}
return 1;
}
static unsigned long chan_reset_token_hash(const QUIC_SRT_ELEM *a)
{
unsigned long h;
assert(sizeof(h) <= sizeof(a->token));
memcpy(&h, &a->token, sizeof(h));
return h;
}
static int chan_reset_token_cmp(const QUIC_SRT_ELEM *a, const QUIC_SRT_ELEM *b)
{
/* RFC 9000 s. 10.3.1:
* When comparing a datagram to stateless reset token values,
* endpoints MUST perform the comparison without leaking
* information about the value of the token. For example,
* performing this comparison in constant time protects the
* value of individual stateless reset tokens from information
* leakage through timing side channels.
*
* TODO(QUIC FUTURE): make this a memcmp when obfuscation is done and update
* comment above.
*/
return CRYPTO_memcmp(&a->token, &b->token, sizeof(a->token));
}
static int reset_token_obfuscate(QUIC_SRT_ELEM *out, const unsigned char *in)
{
/*
* TODO(QUIC FUTURE): update this to AES encrypt the token in ECB mode with a
* random (per channel) key.
*/
memcpy(&out->token, in, sizeof(out->token));
return 1;
}
/*
* Add a stateless reset token to the channel
*/
static int chan_add_reset_token(QUIC_CHANNEL *ch, const unsigned char *new,
uint64_t seq_num)
{
QUIC_SRT_ELEM *srte;
int err;
/* Add to list by sequence number (always the tail) */
if ((srte = OPENSSL_malloc(sizeof(*srte))) == NULL)
return 0;
ossl_list_stateless_reset_tokens_init_elem(srte);
ossl_list_stateless_reset_tokens_insert_tail(&ch->srt_list_seq, srte);
reset_token_obfuscate(srte, new);
srte->seq_num = seq_num;
lh_QUIC_SRT_ELEM_insert(ch->srt_hash_tok, srte);
err = lh_QUIC_SRT_ELEM_error(ch->srt_hash_tok);
if (err > 0) {
ossl_list_stateless_reset_tokens_remove(&ch->srt_list_seq, srte);
OPENSSL_free(srte);
return 0;
}
return 1;
}
/*
* Remove a stateless reset token from the channel
* If the token isn't known, we just ignore the remove request which is safe.
*/
static void chan_remove_reset_token(QUIC_CHANNEL *ch, uint64_t seq_num)
{
QUIC_SRT_ELEM *srte;
/*
* Because the list is ordered and we only ever remove CIDs in order,
* this loop should never iterate, but safer to provide the option.
*/
for (srte = ossl_list_stateless_reset_tokens_head(&ch->srt_list_seq);
srte != NULL;
srte = ossl_list_stateless_reset_tokens_next(srte)) {
if (srte->seq_num > seq_num)
return;
if (srte->seq_num == seq_num) {
ossl_list_stateless_reset_tokens_remove(&ch->srt_list_seq, srte);
(void)lh_QUIC_SRT_ELEM_delete(ch->srt_hash_tok, srte);
OPENSSL_free(srte);
return;
}
}
}
/*
* This is called by the demux whenever a new datagram arrives
*
* TODO(QUIC FUTURE): optimise this to only be called for unparsable packets
*/
static int ch_stateless_reset_token_handler(const unsigned char *data,
size_t datalen, void *arg)
{
QUIC_SRT_ELEM srte;
QUIC_CHANNEL *ch = (QUIC_CHANNEL *)arg;
/*
* Perform some fast and cheap checks for a packet not being a stateless
* reset token. RFC 9000 s. 10.3 specifies this layout for stateless
* reset packets:
*
* Stateless Reset {
* Fixed Bits (2) = 1,
* Unpredictable Bits (38..),
* Stateless Reset Token (128),
* }
*
* It also specifies:
* However, endpoints MUST treat any packet ending in a valid
* stateless reset token as a Stateless Reset, as other QUIC
* versions might allow the use of a long header.
*
* We can rapidly check for the minimum length and that the first pair
* of bits in the first byte are 01 or 11.
*
* The function returns 1 if it is a stateless reset packet, 0 if it isn't
* and -1 if an error was encountered.
*/
if (datalen < QUIC_STATELESS_RESET_TOKEN_LEN + 5 || (0100 & *data) != 0100)
return 0;
memset(&srte, 0, sizeof(srte));
if (!reset_token_obfuscate(&srte, data + datalen - sizeof(srte.token)))
return -1;
return lh_QUIC_SRT_ELEM_retrieve(ch->srt_hash_tok, &srte) != NULL;
}
/*
* QUIC Channel Initialization and Teardown
* ========================================
*/
#define DEFAULT_INIT_CONN_RXFC_WND (768 * 1024)
#define DEFAULT_CONN_RXFC_MAX_WND_MUL 20
#define DEFAULT_INIT_STREAM_RXFC_WND (512 * 1024)
#define DEFAULT_STREAM_RXFC_MAX_WND_MUL 12
#define DEFAULT_INIT_CONN_MAX_STREAMS 100
static int ch_init(QUIC_CHANNEL *ch)
{
OSSL_QUIC_TX_PACKETISER_ARGS txp_args = {0};
OSSL_QTX_ARGS qtx_args = {0};
OSSL_QRX_ARGS qrx_args = {0};
QUIC_TLS_ARGS tls_args = {0};
uint32_t pn_space;
size_t rx_short_cid_len = ch->is_server ? INIT_DCID_LEN : 0;
ossl_list_stateless_reset_tokens_init(&ch->srt_list_seq);
ch->srt_hash_tok = lh_QUIC_SRT_ELEM_new(&chan_reset_token_hash,
&chan_reset_token_cmp);
if (ch->srt_hash_tok == NULL)
goto err;
/* For clients, generate our initial DCID. */
if (!ch->is_server
&& !gen_rand_conn_id(ch->libctx, INIT_DCID_LEN, &ch->init_dcid))
goto err;
/* We plug in a network write BIO to the QTX later when we get one. */
qtx_args.libctx = ch->libctx;
qtx_args.mdpl = QUIC_MIN_INITIAL_DGRAM_LEN;
ch->rx_max_udp_payload_size = qtx_args.mdpl;
ch->ping_deadline = ossl_time_infinite();
ch->qtx = ossl_qtx_new(&qtx_args);
if (ch->qtx == NULL)
goto err;
ch->txpim = ossl_quic_txpim_new();
if (ch->txpim == NULL)
goto err;
ch->cfq = ossl_quic_cfq_new();
if (ch->cfq == NULL)
goto err;
if (!ossl_quic_txfc_init(&ch->conn_txfc, NULL))
goto err;
/*
* Note: The TP we transmit governs what the peer can transmit and thus
* applies to the RXFC.
*/
ch->tx_init_max_stream_data_bidi_local = DEFAULT_INIT_STREAM_RXFC_WND;
ch->tx_init_max_stream_data_bidi_remote = DEFAULT_INIT_STREAM_RXFC_WND;
ch->tx_init_max_stream_data_uni = DEFAULT_INIT_STREAM_RXFC_WND;
if (!ossl_quic_rxfc_init(&ch->conn_rxfc, NULL,
DEFAULT_INIT_CONN_RXFC_WND,
DEFAULT_CONN_RXFC_MAX_WND_MUL *
DEFAULT_INIT_CONN_RXFC_WND,
get_time, ch))
goto err;
for (pn_space = QUIC_PN_SPACE_INITIAL; pn_space < QUIC_PN_SPACE_NUM; ++pn_space)
if (!ossl_quic_rxfc_init_standalone(&ch->crypto_rxfc[pn_space],
INIT_CRYPTO_RECV_BUF_LEN,
get_time, ch))
goto err;
if (!ossl_quic_rxfc_init_standalone(&ch->max_streams_bidi_rxfc,
DEFAULT_INIT_CONN_MAX_STREAMS,
get_time, ch))
goto err;
if (!ossl_quic_rxfc_init_standalone(&ch->max_streams_uni_rxfc,
DEFAULT_INIT_CONN_MAX_STREAMS,
get_time, ch))
goto err;
if (!ossl_statm_init(&ch->statm))
goto err;
ch->have_statm = 1;
ch->cc_method = &ossl_cc_newreno_method;
if ((ch->cc_data = ch->cc_method->new(get_time, ch)) == NULL)
goto err;
if ((ch->ackm = ossl_ackm_new(get_time, ch, &ch->statm,
ch->cc_method, ch->cc_data)) == NULL)
goto err;
if (!ossl_quic_stream_map_init(&ch->qsm, get_stream_limit, ch,
&ch->max_streams_bidi_rxfc,
&ch->max_streams_uni_rxfc,
ch->is_server))
goto err;
ch->have_qsm = 1;
/* We use a zero-length SCID. */
txp_args.cur_dcid = ch->init_dcid;
txp_args.ack_delay_exponent = 3;
txp_args.qtx = ch->qtx;
txp_args.txpim = ch->txpim;
txp_args.cfq = ch->cfq;
txp_args.ackm = ch->ackm;
txp_args.qsm = &ch->qsm;
txp_args.conn_txfc = &ch->conn_txfc;
txp_args.conn_rxfc = &ch->conn_rxfc;
txp_args.max_streams_bidi_rxfc = &ch->max_streams_bidi_rxfc;
txp_args.max_streams_uni_rxfc = &ch->max_streams_uni_rxfc;
txp_args.cc_method = ch->cc_method;
txp_args.cc_data = ch->cc_data;
txp_args.now = get_time;
txp_args.now_arg = ch;
for (pn_space = QUIC_PN_SPACE_INITIAL; pn_space < QUIC_PN_SPACE_NUM; ++pn_space) {
ch->crypto_send[pn_space] = ossl_quic_sstream_new(INIT_CRYPTO_SEND_BUF_LEN);
if (ch->crypto_send[pn_space] == NULL)
goto err;
txp_args.crypto[pn_space] = ch->crypto_send[pn_space];
}
ch->txp = ossl_quic_tx_packetiser_new(&txp_args);
if (ch->txp == NULL)
goto err;
ossl_quic_tx_packetiser_set_ack_tx_cb(ch->txp, ch_on_txp_ack_tx, ch);
if ((ch->demux = ossl_quic_demux_new(/*BIO=*/NULL,
/*Short CID Len=*/rx_short_cid_len,
get_time, ch)) == NULL)
goto err;
/*
* Setup a handler to detect stateless reset tokens.
*/
ossl_quic_demux_set_stateless_reset_handler(ch->demux,
&ch_stateless_reset_token_handler,
ch);
/*
* If we are a server, setup our handler for packets not corresponding to
* any known DCID on our end. This is for handling clients establishing new
* connections.
*/
if (ch->is_server)
ossl_quic_demux_set_default_handler(ch->demux,
ch_default_packet_handler,
ch);
qrx_args.libctx = ch->libctx;
qrx_args.demux = ch->demux;
qrx_args.short_conn_id_len = rx_short_cid_len;
qrx_args.max_deferred = 32;
if ((ch->qrx = ossl_qrx_new(&qrx_args)) == NULL)
goto err;
if (!ossl_qrx_set_late_validation_cb(ch->qrx,
rx_late_validate,
ch))
goto err;
if (!ossl_qrx_set_key_update_cb(ch->qrx,
rxku_detected,
ch))
goto err;
if (!ch->is_server && !ossl_qrx_add_dst_conn_id(ch->qrx, &txp_args.cur_scid))
goto err;
for (pn_space = QUIC_PN_SPACE_INITIAL; pn_space < QUIC_PN_SPACE_NUM; ++pn_space) {
ch->crypto_recv[pn_space] = ossl_quic_rstream_new(NULL, NULL, 0);
if (ch->crypto_recv[pn_space] == NULL)
goto err;
}
/* Plug in the TLS handshake layer. */
tls_args.s = ch->tls;
tls_args.crypto_send_cb = ch_on_crypto_send;
tls_args.crypto_send_cb_arg = ch;
tls_args.crypto_recv_rcd_cb = ch_on_crypto_recv_record;
tls_args.crypto_recv_rcd_cb_arg = ch;
tls_args.crypto_release_rcd_cb = ch_on_crypto_release_record;
tls_args.crypto_release_rcd_cb_arg = ch;
tls_args.yield_secret_cb = ch_on_handshake_yield_secret;
tls_args.yield_secret_cb_arg = ch;
tls_args.got_transport_params_cb = ch_on_transport_params;
tls_args.got_transport_params_cb_arg= ch;
tls_args.handshake_complete_cb = ch_on_handshake_complete;
tls_args.handshake_complete_cb_arg = ch;
tls_args.alert_cb = ch_on_handshake_alert;
tls_args.alert_cb_arg = ch;
tls_args.is_server = ch->is_server;
if ((ch->qtls = ossl_quic_tls_new(&tls_args)) == NULL)
goto err;
ch->tx_max_ack_delay = DEFAULT_MAX_ACK_DELAY;
ch->rx_max_ack_delay = QUIC_DEFAULT_MAX_ACK_DELAY;
ch->rx_ack_delay_exp = QUIC_DEFAULT_ACK_DELAY_EXP;
ch->rx_active_conn_id_limit = QUIC_MIN_ACTIVE_CONN_ID_LIMIT;
ch->max_idle_timeout = QUIC_DEFAULT_IDLE_TIMEOUT;
ch->tx_enc_level = QUIC_ENC_LEVEL_INITIAL;
ch->rx_enc_level = QUIC_ENC_LEVEL_INITIAL;
ch->txku_threshold_override = UINT64_MAX;
ossl_ackm_set_tx_max_ack_delay(ch->ackm, ossl_ms2time(ch->tx_max_ack_delay));
ossl_ackm_set_rx_max_ack_delay(ch->ackm, ossl_ms2time(ch->rx_max_ack_delay));
/*
* Determine the QUIC Transport Parameters and serialize the transport
* parameters block. (For servers, we do this later as we must defer
* generation until we have received the client's transport parameters.)
*/
if (!ch->is_server && !ch_generate_transport_params(ch))
goto err;
ch_update_idle(ch);
ossl_quic_reactor_init(&ch->rtor, ch_tick, ch,
ch_determine_next_tick_deadline(ch));
return 1;
err:
ch_cleanup(ch);
return 0;
}
static void ch_cleanup(QUIC_CHANNEL *ch)
{
QUIC_SRT_ELEM *srte, *srte_next;
uint32_t pn_space;
if (ch->ackm != NULL)
for (pn_space = QUIC_PN_SPACE_INITIAL;
pn_space < QUIC_PN_SPACE_NUM;
++pn_space)
ossl_ackm_on_pkt_space_discarded(ch->ackm, pn_space);
ossl_quic_tx_packetiser_free(ch->txp);
ossl_quic_txpim_free(ch->txpim);
ossl_quic_cfq_free(ch->cfq);
ossl_qtx_free(ch->qtx);
if (ch->cc_data != NULL)
ch->cc_method->free(ch->cc_data);
if (ch->have_statm)
ossl_statm_destroy(&ch->statm);
ossl_ackm_free(ch->ackm);
if (ch->have_qsm)
ossl_quic_stream_map_cleanup(&ch->qsm);
for (pn_space = QUIC_PN_SPACE_INITIAL; pn_space < QUIC_PN_SPACE_NUM; ++pn_space) {
ossl_quic_sstream_free(ch->crypto_send[pn_space]);
ossl_quic_rstream_free(ch->crypto_recv[pn_space]);
}
ossl_qrx_pkt_release(ch->qrx_pkt);
ch->qrx_pkt = NULL;
ossl_quic_tls_free(ch->qtls);
ossl_qrx_free(ch->qrx);
ossl_quic_demux_free(ch->demux);
OPENSSL_free(ch->local_transport_params);
OPENSSL_free((char *)ch->terminate_cause.reason);
OSSL_ERR_STATE_free(ch->err_state);
OPENSSL_free(ch->ack_range_scratch);
/* Free the stateless reset tokens */
for (srte = ossl_list_stateless_reset_tokens_head(&ch->srt_list_seq);
srte != NULL;
srte = srte_next) {
srte_next = ossl_list_stateless_reset_tokens_next(srte);
ossl_list_stateless_reset_tokens_remove(&ch->srt_list_seq, srte);
(void)lh_QUIC_SRT_ELEM_delete(ch->srt_hash_tok, srte);
OPENSSL_free(srte);
}
lh_QUIC_SRT_ELEM_free(ch->srt_hash_tok);
}
QUIC_CHANNEL *ossl_quic_channel_new(const QUIC_CHANNEL_ARGS *args)
{
QUIC_CHANNEL *ch = NULL;
if ((ch = OPENSSL_zalloc(sizeof(*ch))) == NULL)
return NULL;
ch->libctx = args->libctx;
ch->propq = args->propq;
ch->is_server = args->is_server;
ch->tls = args->tls;
ch->mutex = args->mutex;
ch->now_cb = args->now_cb;
ch->now_cb_arg = args->now_cb_arg;
if (!ch_init(ch)) {
OPENSSL_free(ch);
return NULL;
}
return ch;
}
void ossl_quic_channel_free(QUIC_CHANNEL *ch)
{
if (ch == NULL)
return;
ch_cleanup(ch);
OPENSSL_free(ch);
}
/* Set mutator callbacks for test framework support */
int ossl_quic_channel_set_mutator(QUIC_CHANNEL *ch,
ossl_mutate_packet_cb mutatecb,
ossl_finish_mutate_cb finishmutatecb,
void *mutatearg)
{
if (ch->qtx == NULL)
return 0;
ossl_qtx_set_mutator(ch->qtx, mutatecb, finishmutatecb, mutatearg);
return 1;
}
int ossl_quic_channel_get_peer_addr(QUIC_CHANNEL *ch, BIO_ADDR *peer_addr)
{
if (!ch->addressed_mode)
return 0;
*peer_addr = ch->cur_peer_addr;
return 1;
}
int ossl_quic_channel_set_peer_addr(QUIC_CHANNEL *ch, const BIO_ADDR *peer_addr)
{
if (ch->state != QUIC_CHANNEL_STATE_IDLE)
return 0;
if (peer_addr == NULL || BIO_ADDR_family(peer_addr) == AF_UNSPEC) {
BIO_ADDR_clear(&ch->cur_peer_addr);
ch->addressed_mode = 0;
return 1;
}
ch->cur_peer_addr = *peer_addr;
ch->addressed_mode = 1;
return 1;
}
QUIC_REACTOR *ossl_quic_channel_get_reactor(QUIC_CHANNEL *ch)
{
return &ch->rtor;
}
QUIC_STREAM_MAP *ossl_quic_channel_get_qsm(QUIC_CHANNEL *ch)
{
return &ch->qsm;
}
OSSL_STATM *ossl_quic_channel_get_statm(QUIC_CHANNEL *ch)
{
return &ch->statm;
}
QUIC_STREAM *ossl_quic_channel_get_stream_by_id(QUIC_CHANNEL *ch,
uint64_t stream_id)
{
return ossl_quic_stream_map_get_by_id(&ch->qsm, stream_id);
}
int ossl_quic_channel_is_active(const QUIC_CHANNEL *ch)
{
return ch != NULL && ch->state == QUIC_CHANNEL_STATE_ACTIVE;
}
int ossl_quic_channel_is_closing(const QUIC_CHANNEL *ch)
{
return ch->state == QUIC_CHANNEL_STATE_TERMINATING_CLOSING;
}
static int ossl_quic_channel_is_draining(const QUIC_CHANNEL *ch)
{
return ch->state == QUIC_CHANNEL_STATE_TERMINATING_DRAINING;
}
static int ossl_quic_channel_is_terminating(const QUIC_CHANNEL *ch)
{
return ossl_quic_channel_is_closing(ch)
|| ossl_quic_channel_is_draining(ch);
}
int ossl_quic_channel_is_terminated(const QUIC_CHANNEL *ch)
{
return ch->state == QUIC_CHANNEL_STATE_TERMINATED;
}
int ossl_quic_channel_is_term_any(const QUIC_CHANNEL *ch)
{
return ossl_quic_channel_is_terminating(ch)
|| ossl_quic_channel_is_terminated(ch);
}
const QUIC_TERMINATE_CAUSE *
ossl_quic_channel_get_terminate_cause(const QUIC_CHANNEL *ch)
{
return ossl_quic_channel_is_term_any(ch) ? &ch->terminate_cause : NULL;
}
int ossl_quic_channel_is_handshake_complete(const QUIC_CHANNEL *ch)
{
return ch->handshake_complete;
}
int ossl_quic_channel_is_handshake_confirmed(const QUIC_CHANNEL *ch)
{
return ch->handshake_confirmed;
}
QUIC_DEMUX *ossl_quic_channel_get0_demux(QUIC_CHANNEL *ch)
{
return ch->demux;
}
CRYPTO_MUTEX *ossl_quic_channel_get_mutex(QUIC_CHANNEL *ch)
{
return ch->mutex;
}
int ossl_quic_channel_has_pending(const QUIC_CHANNEL *ch)
{
return ossl_quic_demux_has_pending(ch->demux)
|| ossl_qrx_processed_read_pending(ch->qrx);
}
/*
* QUIC Channel: Callbacks from Miscellaneous Subsidiary Components
* ================================================================
*/
/* Used by various components. */
static OSSL_TIME get_time(void *arg)
{
QUIC_CHANNEL *ch = arg;
if (ch->now_cb == NULL)
return ossl_time_now();
return ch->now_cb(ch->now_cb_arg);
}
/* Used by QSM. */
static uint64_t get_stream_limit(int uni, void *arg)
{
QUIC_CHANNEL *ch = arg;
return uni ? ch->max_local_streams_uni : ch->max_local_streams_bidi;
}
/*
* Called by QRX to determine if a packet is potentially invalid before trying
* to decrypt it.
*/
static int rx_late_validate(QUIC_PN pn, int pn_space, void *arg)
{
QUIC_CHANNEL *ch = arg;
/* Potential duplicates should not be processed. */
if (!ossl_ackm_is_rx_pn_processable(ch->ackm, pn, pn_space))
return 0;
return 1;
}
/*
* Triggers a TXKU (whether spontaneous or solicited). Does not check whether
* spontaneous TXKU is currently allowed.
*/
QUIC_NEEDS_LOCK
static void ch_trigger_txku(QUIC_CHANNEL *ch)
{
uint64_t next_pn
= ossl_quic_tx_packetiser_get_next_pn(ch->txp, QUIC_PN_SPACE_APP);
if (!ossl_quic_pn_valid(next_pn)
|| !ossl_qtx_trigger_key_update(ch->qtx)) {
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_INTERNAL_ERROR, 0,
"key update");
return;
}
ch->txku_in_progress = 1;
ch->txku_pn = next_pn;
ch->rxku_expected = ch->ku_locally_initiated;
}
QUIC_NEEDS_LOCK
static int txku_in_progress(QUIC_CHANNEL *ch)
{
if (ch->txku_in_progress
&& ossl_ackm_get_largest_acked(ch->ackm, QUIC_PN_SPACE_APP) >= ch->txku_pn) {
OSSL_TIME pto = ossl_ackm_get_pto_duration(ch->ackm);
/*
* RFC 9001 s. 6.5: Endpoints SHOULD wait three times the PTO before
* initiating a key update after receiving an acknowledgment that
* confirms that the previous key update was received.
*
* Note that by the above wording, this period starts from when we get
* the ack for a TXKU-triggering packet, not when the TXKU is initiated.
* So we defer TXKU cooldown deadline calculation to this point.
*/
ch->txku_in_progress = 0;
ch->txku_cooldown_deadline = ossl_time_add(get_time(ch),
ossl_time_multiply(pto, 3));
}
return ch->txku_in_progress;
}
QUIC_NEEDS_LOCK
static int txku_allowed(QUIC_CHANNEL *ch)
{
return ch->tx_enc_level == QUIC_ENC_LEVEL_1RTT /* Sanity check. */
/* Strict RFC 9001 criterion for TXKU. */
&& ch->handshake_confirmed
&& !txku_in_progress(ch);
}
QUIC_NEEDS_LOCK
static int txku_recommendable(QUIC_CHANNEL *ch)
{
if (!txku_allowed(ch))
return 0;
return
/* Recommended RFC 9001 criterion for TXKU. */
ossl_time_compare(get_time(ch), ch->txku_cooldown_deadline) >= 0
/* Some additional sensible criteria. */
&& !ch->rxku_in_progress
&& !ch->rxku_pending_confirm;
}
QUIC_NEEDS_LOCK
static int txku_desirable(QUIC_CHANNEL *ch)
{
uint64_t cur_pkt_count, max_pkt_count, thresh_pkt_count;
const uint32_t enc_level = QUIC_ENC_LEVEL_1RTT;
/* Check AEAD limit to determine if we should perform a spontaneous TXKU. */
cur_pkt_count = ossl_qtx_get_cur_epoch_pkt_count(ch->qtx, enc_level);
max_pkt_count = ossl_qtx_get_max_epoch_pkt_count(ch->qtx, enc_level);
thresh_pkt_count = max_pkt_count / 2;
if (ch->txku_threshold_override != UINT64_MAX)
thresh_pkt_count = ch->txku_threshold_override;
return cur_pkt_count >= thresh_pkt_count;
}
QUIC_NEEDS_LOCK
static void ch_maybe_trigger_spontaneous_txku(QUIC_CHANNEL *ch)
{
if (!txku_recommendable(ch) || !txku_desirable(ch))
return;
ch->ku_locally_initiated = 1;
ch_trigger_txku(ch);
}
QUIC_NEEDS_LOCK
static int rxku_allowed(QUIC_CHANNEL *ch)
{
/*
* RFC 9001 s. 6.1: An endpoint MUST NOT initiate a key update prior to
* having confirmed the handshake (Section 4.1.2).
*
* RFC 9001 s. 6.1: An endpoint MUST NOT initiate a subsequent key update
* unless it has received an acknowledgment for a packet that was sent
* protected with keys from the current key phase.
*
* RFC 9001 s. 6.2: If an endpoint detects a second update before it has
* sent any packets with updated keys containing an acknowledgment for the
* packet that initiated the key update, it indicates that its peer has
* updated keys twice without awaiting confirmation. An endpoint MAY treat
* such consecutive key updates as a connection error of type
* KEY_UPDATE_ERROR.
*/
return ch->handshake_confirmed && !ch->rxku_pending_confirm;
}
/*
* Called when the QRX detects a new RX key update event.
*/
enum rxku_decision {
DECISION_RXKU_ONLY,
DECISION_PROTOCOL_VIOLATION,
DECISION_SOLICITED_TXKU
};
/* Called when the QRX detects a key update has occurred. */
QUIC_NEEDS_LOCK
static void rxku_detected(QUIC_PN pn, void *arg)
{
QUIC_CHANNEL *ch = arg;
enum rxku_decision decision;
OSSL_TIME pto;
/*
* Note: rxku_in_progress is always 0 here as an RXKU cannot be detected
* when we are still in UPDATING or COOLDOWN (see quic_record_rx.h).
*/
assert(!ch->rxku_in_progress);
if (!rxku_allowed(ch))
/* Is RXKU even allowed at this time? */
decision = DECISION_PROTOCOL_VIOLATION;
else if (ch->ku_locally_initiated)
/*
* If this key update was locally initiated (meaning that this detected
* RXKU event is a result of our own spontaneous TXKU), we do not
* trigger another TXKU; after all, to do so would result in an infinite
* ping-pong of key updates. We still process it as an RXKU.
*/
decision = DECISION_RXKU_ONLY;
else
/*
* Otherwise, a peer triggering a KU means we have to trigger a KU also.
*/
decision = DECISION_SOLICITED_TXKU;
if (decision == DECISION_PROTOCOL_VIOLATION) {
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_KEY_UPDATE_ERROR,
0, "RX key update again too soon");
return;
}
pto = ossl_ackm_get_pto_duration(ch->ackm);
ch->ku_locally_initiated = 0;
ch->rxku_in_progress = 1;
ch->rxku_pending_confirm = 1;
ch->rxku_trigger_pn = pn;
ch->rxku_update_end_deadline = ossl_time_add(get_time(ch), pto);
ch->rxku_expected = 0;
if (decision == DECISION_SOLICITED_TXKU)
/* NOT gated by usual txku_allowed() */
ch_trigger_txku(ch);
/*
* Ordinarily, we only generate ACK when some ACK-eliciting frame has been
* received. In some cases, this may not occur for a long time, for example
* if transmission of application data is going in only one direction and
* nothing else is happening with the connection. However, since the peer
* cannot initiate a subsequent (spontaneous) TXKU until its prior
* (spontaneous or solicited) TXKU has completed - meaning that prior
* TXKU's trigger packet (or subsequent packet) has been acknowledged, this
* can lead to very long times before a TXKU is considered 'completed'.
* Optimise this by forcing ACK generation after triggering TXKU.
* (Basically, we consider a RXKU event something that is 'ACK-eliciting',
* which it more or less should be; it is necessarily separate from ordinary
* processing of ACK-eliciting frames as key update is not indicated via a
* frame.)
*/
ossl_quic_tx_packetiser_schedule_ack(ch->txp, QUIC_PN_SPACE_APP);
}
/* Called per tick to handle RXKU timer events. */
QUIC_NEEDS_LOCK
static void ch_rxku_tick(QUIC_CHANNEL *ch)
{
if (!ch->rxku_in_progress
|| ossl_time_compare(get_time(ch), ch->rxku_update_end_deadline) < 0)
return;
ch->rxku_update_end_deadline = ossl_time_infinite();
ch->rxku_in_progress = 0;
if (!ossl_qrx_key_update_timeout(ch->qrx, /*normal=*/1))
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_INTERNAL_ERROR, 0,
"RXKU cooldown internal error");
}
QUIC_NEEDS_LOCK
static void ch_on_txp_ack_tx(const OSSL_QUIC_FRAME_ACK *ack, uint32_t pn_space,
void *arg)
{
QUIC_CHANNEL *ch = arg;
if (pn_space != QUIC_PN_SPACE_APP || !ch->rxku_pending_confirm
|| !ossl_quic_frame_ack_contains_pn(ack, ch->rxku_trigger_pn))
return;
/*
* Defer clearing rxku_pending_confirm until TXP generate call returns
* successfully.
*/
ch->rxku_pending_confirm_done = 1;
}
/*
* QUIC Channel: Handshake Layer Event Handling
* ============================================
*/
static int ch_on_crypto_send(const unsigned char *buf, size_t buf_len,
size_t *consumed, void *arg)
{
int ret;
QUIC_CHANNEL *ch = arg;
uint32_t enc_level = ch->tx_enc_level;
uint32_t pn_space = ossl_quic_enc_level_to_pn_space(enc_level);
QUIC_SSTREAM *sstream = ch->crypto_send[pn_space];
if (!ossl_assert(sstream != NULL))
return 0;
ret = ossl_quic_sstream_append(sstream, buf, buf_len, consumed);
return ret;
}
static int crypto_ensure_empty(QUIC_RSTREAM *rstream)
{
size_t avail = 0;
int is_fin = 0;
if (rstream == NULL)
return 1;
if (!ossl_quic_rstream_available(rstream, &avail, &is_fin))
return 0;
return avail == 0;
}
static int ch_on_crypto_recv_record(const unsigned char **buf,
size_t *bytes_read, void *arg)
{
QUIC_CHANNEL *ch = arg;
QUIC_RSTREAM *rstream;
int is_fin = 0; /* crypto stream is never finished, so we don't use this */
uint32_t i;
/*
* After we move to a later EL we must not allow our peer to send any new
* bytes in the crypto stream on a previous EL. Retransmissions of old bytes
* are allowed.
*
* In practice we will only move to a new EL when we have consumed all bytes
* which should be sent on the crypto stream at a previous EL. For example,
* the Handshake EL should not be provisioned until we have completely
* consumed a TLS 1.3 ServerHello. Thus when we provision an EL the output
* of ossl_quic_rstream_available() should be 0 for all lower ELs. Thus if a
* given EL is available we simply ensure we have not received any further
* bytes at a lower EL.
*/
for (i = QUIC_ENC_LEVEL_INITIAL; i < ch->rx_enc_level; ++i)
if (i != QUIC_ENC_LEVEL_0RTT &&
!crypto_ensure_empty(ch->crypto_recv[ossl_quic_enc_level_to_pn_space(i)])) {
/* Protocol violation (RFC 9001 s. 4.1.3) */
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_PROTOCOL_VIOLATION,
OSSL_QUIC_FRAME_TYPE_CRYPTO,
"crypto stream data in wrong EL");
return 0;
}
rstream = ch->crypto_recv[ossl_quic_enc_level_to_pn_space(ch->rx_enc_level)];
if (rstream == NULL)
return 0;
return ossl_quic_rstream_get_record(rstream, buf, bytes_read,
&is_fin);
}
static int ch_on_crypto_release_record(size_t bytes_read, void *arg)
{
QUIC_CHANNEL *ch = arg;
QUIC_RSTREAM *rstream;
OSSL_RTT_INFO rtt_info;
uint32_t rx_pn_space = ossl_quic_enc_level_to_pn_space(ch->rx_enc_level);
rstream = ch->crypto_recv[rx_pn_space];
if (rstream == NULL)
return 0;
ossl_statm_get_rtt_info(ossl_quic_channel_get_statm(ch), &rtt_info);
if (!ossl_quic_rxfc_on_retire(&ch->crypto_rxfc[rx_pn_space], bytes_read,
rtt_info.smoothed_rtt))
return 0;
return ossl_quic_rstream_release_record(rstream, bytes_read);
}
static int ch_on_handshake_yield_secret(uint32_t enc_level, int direction,
uint32_t suite_id, EVP_MD *md,
const unsigned char *secret,
size_t secret_len,
void *arg)
{
QUIC_CHANNEL *ch = arg;
uint32_t i;
if (enc_level < QUIC_ENC_LEVEL_HANDSHAKE || enc_level >= QUIC_ENC_LEVEL_NUM)
/* Invalid EL. */
return 0;
if (direction) {
/* TX */
if (enc_level <= ch->tx_enc_level)
/*
* Does not make sense for us to try and provision an EL we have already
* attained.
*/
return 0;
if (!ossl_qtx_provide_secret(ch->qtx, enc_level,
suite_id, md,
secret, secret_len))
return 0;
ch->tx_enc_level = enc_level;
} else {
/* RX */
if (enc_level <= ch->rx_enc_level)
/*
* Does not make sense for us to try and provision an EL we have already
* attained.
*/
return 0;
/*
* Ensure all crypto streams for previous ELs are now empty of available
* data.
*/
for (i = QUIC_ENC_LEVEL_INITIAL; i < enc_level; ++i)
if (!crypto_ensure_empty(ch->crypto_recv[ossl_quic_enc_level_to_pn_space(i)])) {
/* Protocol violation (RFC 9001 s. 4.1.3) */
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_PROTOCOL_VIOLATION,
OSSL_QUIC_FRAME_TYPE_CRYPTO,
"crypto stream data in wrong EL");
return 0;
}
if (!ossl_qrx_provide_secret(ch->qrx, enc_level,
suite_id, md,
secret, secret_len))
return 0;
ch->have_new_rx_secret = 1;
ch->rx_enc_level = enc_level;
}
return 1;
}
static int ch_on_handshake_complete(void *arg)
{
QUIC_CHANNEL *ch = arg;
if (!ossl_assert(!ch->handshake_complete))
return 0; /* this should not happen twice */
if (!ossl_assert(ch->tx_enc_level == QUIC_ENC_LEVEL_1RTT))
return 0;
if (!ch->got_remote_transport_params) {
/*
* Was not a valid QUIC handshake if we did not get valid transport
* params.
*/
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_CRYPTO_MISSING_EXT,
OSSL_QUIC_FRAME_TYPE_CRYPTO,
"no transport parameters received");
return 0;
}
/* Don't need transport parameters anymore. */
OPENSSL_free(ch->local_transport_params);
ch->local_transport_params = NULL;
/* Tell the QRX it can now process 1-RTT packets. */
ossl_qrx_allow_1rtt_processing(ch->qrx);
/* Tell TXP the handshake is complete. */
ossl_quic_tx_packetiser_notify_handshake_complete(ch->txp);
ch->handshake_complete = 1;
if (ch->is_server) {
/*
* On the server, the handshake is confirmed as soon as it is complete.
*/
ossl_quic_channel_on_handshake_confirmed(ch);
ossl_quic_tx_packetiser_schedule_handshake_done(ch->txp);
}
return 1;
}
static int ch_on_handshake_alert(void *arg, unsigned char alert_code)
{
QUIC_CHANNEL *ch = arg;
/*
* RFC 9001 s. 4.4: More specifically, servers MUST NOT send post-handshake
* TLS CertificateRequest messages, and clients MUST treat receipt of such
* messages as a connection error of type PROTOCOL_VIOLATION.
*/
if (alert_code == SSL_AD_UNEXPECTED_MESSAGE
&& ch->handshake_complete
&& ossl_quic_tls_is_cert_request(ch->qtls))
ossl_quic_channel_raise_protocol_error(ch,
QUIC_ERR_PROTOCOL_VIOLATION,
0,
"Post-handshake TLS "
"CertificateRequest received");
/*
* RFC 9001 s. 4.6.1: Servers MUST NOT send the early_data extension with a
* max_early_data_size field set to any value other than 0xffffffff. A
* client MUST treat receipt of a NewSessionTicket that contains an
* early_data extension with any other value as a connection error of type
* PROTOCOL_VIOLATION.
*/
else if (alert_code == SSL_AD_ILLEGAL_PARAMETER
&& ch->handshake_complete
&& ossl_quic_tls_has_bad_max_early_data(ch->qtls))
ossl_quic_channel_raise_protocol_error(ch,
QUIC_ERR_PROTOCOL_VIOLATION,
0,
"Bad max_early_data received");
else
ossl_quic_channel_raise_protocol_error(ch,
QUIC_ERR_CRYPTO_ERR_BEGIN
+ alert_code,
0, "handshake alert");
return 1;
}
/*
* QUIC Channel: Transport Parameter Handling
* ==========================================
*/
/*
* Called by handshake layer when we receive QUIC Transport Parameters from the
* peer. Note that these are not authenticated until the handshake is marked
* as complete.
*/
#define TP_REASON_SERVER_ONLY(x) \
x " may not be sent by a client"
#define TP_REASON_DUP(x) \
x " appears multiple times"
#define TP_REASON_MALFORMED(x) \
x " is malformed"
#define TP_REASON_EXPECTED_VALUE(x) \
x " does not match expected value"
#define TP_REASON_NOT_RETRY(x) \
x " sent when not performing a retry"
#define TP_REASON_REQUIRED(x) \
x " was not sent but is required"
#define TP_REASON_INTERNAL_ERROR(x) \
x " encountered internal error"
static void txfc_bump_cwm_bidi(QUIC_STREAM *s, void *arg)
{
if (!ossl_quic_stream_is_bidi(s)
|| ossl_quic_stream_is_server_init(s))
return;
ossl_quic_txfc_bump_cwm(&s->txfc, *(uint64_t *)arg);
}
static void txfc_bump_cwm_uni(QUIC_STREAM *s, void *arg)
{
if (ossl_quic_stream_is_bidi(s)
|| ossl_quic_stream_is_server_init(s))
return;
ossl_quic_txfc_bump_cwm(&s->txfc, *(uint64_t *)arg);
}
static void do_update(QUIC_STREAM *s, void *arg)
{
QUIC_CHANNEL *ch = arg;
ossl_quic_stream_map_update_state(&ch->qsm, s);
}
static int ch_on_transport_params(const unsigned char *params,
size_t params_len,
void *arg)
{
QUIC_CHANNEL *ch = arg;
PACKET pkt;
uint64_t id, v;
size_t len;
const unsigned char *body;
int got_orig_dcid = 0;
int got_initial_scid = 0;
int got_retry_scid = 0;
int got_initial_max_data = 0;
int got_initial_max_stream_data_bidi_local = 0;
int got_initial_max_stream_data_bidi_remote = 0;
int got_initial_max_stream_data_uni = 0;
int got_initial_max_streams_bidi = 0;
int got_initial_max_streams_uni = 0;
int got_stateless_reset_token = 0;
int got_preferred_addr = 0;
int got_ack_delay_exp = 0;
int got_max_ack_delay = 0;
int got_max_udp_payload_size = 0;
int got_max_idle_timeout = 0;
int got_active_conn_id_limit = 0;
int got_disable_active_migration = 0;
QUIC_CONN_ID cid;
const char *reason = "bad transport parameter";
if (ch->got_remote_transport_params) {
reason = "multiple transport parameter extensions";
goto malformed;
}
if (!PACKET_buf_init(&pkt, params, params_len)) {
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_INTERNAL_ERROR, 0,
"internal error (packet buf init)");
return 0;
}
while (PACKET_remaining(&pkt) > 0) {
if (!ossl_quic_wire_peek_transport_param(&pkt, &id))
goto malformed;
switch (id) {
case QUIC_TPARAM_ORIG_DCID:
if (got_orig_dcid) {
reason = TP_REASON_DUP("ORIG_DCID");
goto malformed;
}
if (ch->is_server) {
reason = TP_REASON_SERVER_ONLY("ORIG_DCID");
goto malformed;
}
if (!ossl_quic_wire_decode_transport_param_cid(&pkt, NULL, &cid)) {
reason = TP_REASON_MALFORMED("ORIG_DCID");
goto malformed;
}
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
/* Must match our initial DCID. */
if (!ossl_quic_conn_id_eq(&ch->init_dcid, &cid)) {
reason = TP_REASON_EXPECTED_VALUE("ORIG_DCID");
goto malformed;
}
#endif
got_orig_dcid = 1;
break;
case QUIC_TPARAM_RETRY_SCID:
if (ch->is_server) {
reason = TP_REASON_SERVER_ONLY("RETRY_SCID");
goto malformed;
}
if (got_retry_scid) {
reason = TP_REASON_DUP("RETRY_SCID");
goto malformed;
}
if (!ch->doing_retry) {
reason = TP_REASON_NOT_RETRY("RETRY_SCID");
goto malformed;
}
if (!ossl_quic_wire_decode_transport_param_cid(&pkt, NULL, &cid)) {
reason = TP_REASON_MALFORMED("RETRY_SCID");
goto malformed;
}
/* Must match Retry packet SCID. */
if (!ossl_quic_conn_id_eq(&ch->retry_scid, &cid)) {
reason = TP_REASON_EXPECTED_VALUE("RETRY_SCID");
goto malformed;
}
got_retry_scid = 1;
break;
case QUIC_TPARAM_INITIAL_SCID:
if (got_initial_scid) {
/* must not appear more than once */
reason = TP_REASON_DUP("INITIAL_SCID");
goto malformed;
}
if (!ossl_quic_wire_decode_transport_param_cid(&pkt, NULL, &cid)) {
reason = TP_REASON_MALFORMED("INITIAL_SCID");
goto malformed;
}
/* Must match SCID of first Initial packet from server. */
if (!ossl_quic_conn_id_eq(&ch->init_scid, &cid)) {
reason = TP_REASON_EXPECTED_VALUE("INITIAL_SCID");
goto malformed;
}
got_initial_scid = 1;
break;
case QUIC_TPARAM_INITIAL_MAX_DATA:
if (got_initial_max_data) {
/* must not appear more than once */
reason = TP_REASON_DUP("INITIAL_MAX_DATA");
goto malformed;
}
if (!ossl_quic_wire_decode_transport_param_int(&pkt, &id, &v)) {
reason = TP_REASON_MALFORMED("INITIAL_MAX_DATA");
goto malformed;
}
ossl_quic_txfc_bump_cwm(&ch->conn_txfc, v);
got_initial_max_data = 1;
break;
case QUIC_TPARAM_INITIAL_MAX_STREAM_DATA_BIDI_LOCAL:
if (got_initial_max_stream_data_bidi_local) {
/* must not appear more than once */
reason = TP_REASON_DUP("INITIAL_MAX_STREAM_DATA_BIDI_LOCAL");
goto malformed;
}
if (!ossl_quic_wire_decode_transport_param_int(&pkt, &id, &v)) {
reason = TP_REASON_MALFORMED("INITIAL_MAX_STREAM_DATA_BIDI_LOCAL");
goto malformed;
}
/*
* This is correct; the BIDI_LOCAL TP governs streams created by
* the endpoint which sends the TP, i.e., our peer.
*/
ch->rx_init_max_stream_data_bidi_remote = v;
got_initial_max_stream_data_bidi_local = 1;
break;
case QUIC_TPARAM_INITIAL_MAX_STREAM_DATA_BIDI_REMOTE:
if (got_initial_max_stream_data_bidi_remote) {
/* must not appear more than once */
reason = TP_REASON_DUP("INITIAL_MAX_STREAM_DATA_BIDI_REMOTE");
goto malformed;
}
if (!ossl_quic_wire_decode_transport_param_int(&pkt, &id, &v)) {
reason = TP_REASON_MALFORMED("INITIAL_MAX_STREAM_DATA_BIDI_REMOTE");
goto malformed;
}
/*
* This is correct; the BIDI_REMOTE TP governs streams created
* by the endpoint which receives the TP, i.e., us.
*/
ch->rx_init_max_stream_data_bidi_local = v;
/* Apply to all existing streams. */
ossl_quic_stream_map_visit(&ch->qsm, txfc_bump_cwm_bidi, &v);
got_initial_max_stream_data_bidi_remote = 1;
break;
case QUIC_TPARAM_INITIAL_MAX_STREAM_DATA_UNI:
if (got_initial_max_stream_data_uni) {
/* must not appear more than once */
reason = TP_REASON_DUP("INITIAL_MAX_STREAM_DATA_UNI");
goto malformed;
}
if (!ossl_quic_wire_decode_transport_param_int(&pkt, &id, &v)) {
reason = TP_REASON_MALFORMED("INITIAL_MAX_STREAM_DATA_UNI");
goto malformed;
}
ch->rx_init_max_stream_data_uni = v;
/* Apply to all existing streams. */
ossl_quic_stream_map_visit(&ch->qsm, txfc_bump_cwm_uni, &v);
got_initial_max_stream_data_uni = 1;
break;
case QUIC_TPARAM_ACK_DELAY_EXP:
if (got_ack_delay_exp) {
/* must not appear more than once */
reason = TP_REASON_DUP("ACK_DELAY_EXP");
goto malformed;
}
if (!ossl_quic_wire_decode_transport_param_int(&pkt, &id, &v)
|| v > QUIC_MAX_ACK_DELAY_EXP) {
reason = TP_REASON_MALFORMED("ACK_DELAY_EXP");
goto malformed;
}
ch->rx_ack_delay_exp = (unsigned char)v;
got_ack_delay_exp = 1;
break;
case QUIC_TPARAM_MAX_ACK_DELAY:
if (got_max_ack_delay) {
/* must not appear more than once */
reason = TP_REASON_DUP("MAX_ACK_DELAY");
goto malformed;
}
if (!ossl_quic_wire_decode_transport_param_int(&pkt, &id, &v)
|| v >= (((uint64_t)1) << 14)) {
reason = TP_REASON_MALFORMED("MAX_ACK_DELAY");
goto malformed;
}
ch->rx_max_ack_delay = v;
ossl_ackm_set_rx_max_ack_delay(ch->ackm,
ossl_ms2time(ch->rx_max_ack_delay));
got_max_ack_delay = 1;
break;
case QUIC_TPARAM_INITIAL_MAX_STREAMS_BIDI:
if (got_initial_max_streams_bidi) {
/* must not appear more than once */
reason = TP_REASON_DUP("INITIAL_MAX_STREAMS_BIDI");
goto malformed;
}
if (!ossl_quic_wire_decode_transport_param_int(&pkt, &id, &v)
|| v > (((uint64_t)1) << 60)) {
reason = TP_REASON_MALFORMED("INITIAL_MAX_STREAMS_BIDI");
goto malformed;
}
assert(ch->max_local_streams_bidi == 0);
ch->max_local_streams_bidi = v;
got_initial_max_streams_bidi = 1;
break;
case QUIC_TPARAM_INITIAL_MAX_STREAMS_UNI:
if (got_initial_max_streams_uni) {
/* must not appear more than once */
reason = TP_REASON_DUP("INITIAL_MAX_STREAMS_UNI");
goto malformed;
}
if (!ossl_quic_wire_decode_transport_param_int(&pkt, &id, &v)
|| v > (((uint64_t)1) << 60)) {
reason = TP_REASON_MALFORMED("INITIAL_MAX_STREAMS_UNI");
goto malformed;
}
assert(ch->max_local_streams_uni == 0);
ch->max_local_streams_uni = v;
got_initial_max_streams_uni = 1;
break;
case QUIC_TPARAM_MAX_IDLE_TIMEOUT:
if (got_max_idle_timeout) {
/* must not appear more than once */
reason = TP_REASON_DUP("MAX_IDLE_TIMEOUT");
goto malformed;
}
if (!ossl_quic_wire_decode_transport_param_int(&pkt, &id, &v)) {
reason = TP_REASON_MALFORMED("MAX_IDLE_TIMEOUT");
goto malformed;
}
if (v > 0 && v < ch->max_idle_timeout)
ch->max_idle_timeout = v;
ch_update_idle(ch);
got_max_idle_timeout = 1;
break;
case QUIC_TPARAM_MAX_UDP_PAYLOAD_SIZE:
if (got_max_udp_payload_size) {
/* must not appear more than once */
reason = TP_REASON_DUP("MAX_UDP_PAYLOAD_SIZE");
goto malformed;
}
if (!ossl_quic_wire_decode_transport_param_int(&pkt, &id, &v)
|| v < QUIC_MIN_INITIAL_DGRAM_LEN) {
reason = TP_REASON_MALFORMED("MAX_UDP_PAYLOAD_SIZE");
goto malformed;
}
ch->rx_max_udp_payload_size = v;
got_max_udp_payload_size = 1;
break;
case QUIC_TPARAM_ACTIVE_CONN_ID_LIMIT:
if (got_active_conn_id_limit) {
/* must not appear more than once */
reason = TP_REASON_DUP("ACTIVE_CONN_ID_LIMIT");
goto malformed;
}
if (!ossl_quic_wire_decode_transport_param_int(&pkt, &id, &v)
|| v < QUIC_MIN_ACTIVE_CONN_ID_LIMIT) {
reason = TP_REASON_MALFORMED("ACTIVE_CONN_ID_LIMIT");
goto malformed;
}
ch->rx_active_conn_id_limit = v;
got_active_conn_id_limit = 1;
break;
case QUIC_TPARAM_STATELESS_RESET_TOKEN:
if (got_stateless_reset_token) {
reason = TP_REASON_DUP("STATELESS_RESET_TOKEN");
goto malformed;
}
/*
* We must ensure a client doesn't send them because we don't have
* processing for them.
*
* TODO(QUIC SERVER): remove this restriction
*/
if (ch->is_server) {
reason = TP_REASON_SERVER_ONLY("STATELESS_RESET_TOKEN");
goto malformed;
}
body = ossl_quic_wire_decode_transport_param_bytes(&pkt, &id, &len);
if (body == NULL || len != QUIC_STATELESS_RESET_TOKEN_LEN) {
reason = TP_REASON_MALFORMED("STATELESS_RESET_TOKEN");
goto malformed;
}
if (!chan_add_reset_token(ch, body, ch->cur_remote_seq_num)) {
reason = TP_REASON_INTERNAL_ERROR("STATELESS_RESET_TOKEN");
goto malformed;
}
got_stateless_reset_token = 1;
break;
case QUIC_TPARAM_PREFERRED_ADDR:
{
/* TODO(QUIC FUTURE): Handle preferred address. */
QUIC_PREFERRED_ADDR pfa;
if (got_preferred_addr) {
reason = TP_REASON_DUP("PREFERRED_ADDR");
goto malformed;
}
/*
* RFC 9000 s. 18.2: "A server that chooses a zero-length
* connection ID MUST NOT provide a preferred address.
* Similarly, a server MUST NOT include a zero-length connection
* ID in this transport parameter. A client MUST treat a
* violation of these requirements as a connection error of type
* TRANSPORT_PARAMETER_ERROR."
*/
if (ch->is_server) {
reason = TP_REASON_SERVER_ONLY("PREFERRED_ADDR");
goto malformed;
}
if (ch->cur_remote_dcid.id_len == 0) {
reason = "PREFERRED_ADDR provided for zero-length CID";
goto malformed;
}
if (!ossl_quic_wire_decode_transport_param_preferred_addr(&pkt, &pfa)) {
reason = TP_REASON_MALFORMED("PREFERRED_ADDR");
goto malformed;
}
if (pfa.cid.id_len == 0) {
reason = "zero-length CID in PREFERRED_ADDR";
goto malformed;
}
got_preferred_addr = 1;
}
break;
case QUIC_TPARAM_DISABLE_ACTIVE_MIGRATION:
/* We do not currently handle migration, so nothing to do. */
if (got_disable_active_migration) {
/* must not appear more than once */
reason = TP_REASON_DUP("DISABLE_ACTIVE_MIGRATION");
goto malformed;
}
body = ossl_quic_wire_decode_transport_param_bytes(&pkt, &id, &len);
if (body == NULL || len > 0) {
reason = TP_REASON_MALFORMED("DISABLE_ACTIVE_MIGRATION");
goto malformed;
}
got_disable_active_migration = 1;
break;
default:
/*
* Skip over and ignore.
*
* RFC 9000 s. 7.4: We SHOULD treat duplicated transport parameters
* as a connection error, but we are not required to. Currently,
* handle this programmatically by checking for duplicates in the
* parameters that we recognise, as above, but don't bother
* maintaining a list of duplicates for anything we don't recognise.
*/
body = ossl_quic_wire_decode_transport_param_bytes(&pkt, &id,
&len);
if (body == NULL)
goto malformed;
break;
}
}
if (!got_initial_scid) {
reason = TP_REASON_REQUIRED("INITIAL_SCID");
goto malformed;
}
if (!ch->is_server) {
if (!got_orig_dcid) {
reason = TP_REASON_REQUIRED("ORIG_DCID");
goto malformed;
}
if (ch->doing_retry && !got_retry_scid) {
reason = TP_REASON_REQUIRED("RETRY_SCID");
goto malformed;
}
}
ch->got_remote_transport_params = 1;
if (got_initial_max_data || got_initial_max_stream_data_bidi_remote
|| got_initial_max_streams_bidi || got_initial_max_streams_uni)
/*
* If FC credit was bumped, we may now be able to send. Update all
* streams.
*/
ossl_quic_stream_map_visit(&ch->qsm, do_update, ch);
/* If we are a server, we now generate our own transport parameters. */
if (ch->is_server && !ch_generate_transport_params(ch)) {
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_INTERNAL_ERROR, 0,
"internal error");
return 0;
}
return 1;
malformed:
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_TRANSPORT_PARAMETER_ERROR,
0, reason);
return 0;
}
/*
* Called when we want to generate transport parameters. This is called
* immediately at instantiation time for a client and after we receive the
* client's transport parameters for a server.
*/
static int ch_generate_transport_params(QUIC_CHANNEL *ch)
{
int ok = 0;
BUF_MEM *buf_mem = NULL;
WPACKET wpkt;
int wpkt_valid = 0;
size_t buf_len = 0;
if (ch->local_transport_params != NULL)
goto err;
if ((buf_mem = BUF_MEM_new()) == NULL)
goto err;
if (!WPACKET_init(&wpkt, buf_mem))
goto err;
wpkt_valid = 1;
if (ossl_quic_wire_encode_transport_param_bytes(&wpkt, QUIC_TPARAM_DISABLE_ACTIVE_MIGRATION,
NULL, 0) == NULL)
goto err;
if (ch->is_server) {
if (!ossl_quic_wire_encode_transport_param_cid(&wpkt, QUIC_TPARAM_ORIG_DCID,
&ch->init_dcid))
goto err;
if (!ossl_quic_wire_encode_transport_param_cid(&wpkt, QUIC_TPARAM_INITIAL_SCID,
&ch->cur_local_cid))
goto err;
} else {
/* Client always uses an empty SCID. */
if (ossl_quic_wire_encode_transport_param_bytes(&wpkt, QUIC_TPARAM_INITIAL_SCID,
NULL, 0) == NULL)
goto err;
}
if (!ossl_quic_wire_encode_transport_param_int(&wpkt, QUIC_TPARAM_MAX_IDLE_TIMEOUT,
ch->max_idle_timeout))
goto err;
if (!ossl_quic_wire_encode_transport_param_int(&wpkt, QUIC_TPARAM_MAX_UDP_PAYLOAD_SIZE,
QUIC_MIN_INITIAL_DGRAM_LEN))
goto err;
if (!ossl_quic_wire_encode_transport_param_int(&wpkt, QUIC_TPARAM_ACTIVE_CONN_ID_LIMIT,
QUIC_MIN_ACTIVE_CONN_ID_LIMIT))
goto err;
if (ch->tx_max_ack_delay != QUIC_DEFAULT_MAX_ACK_DELAY
&& !ossl_quic_wire_encode_transport_param_int(&wpkt, QUIC_TPARAM_MAX_ACK_DELAY,
ch->tx_max_ack_delay))
goto err;
if (!ossl_quic_wire_encode_transport_param_int(&wpkt, QUIC_TPARAM_INITIAL_MAX_DATA,
ossl_quic_rxfc_get_cwm(&ch->conn_rxfc)))
goto err;
/* Send the default CWM for a new RXFC. */
if (!ossl_quic_wire_encode_transport_param_int(&wpkt, QUIC_TPARAM_INITIAL_MAX_STREAM_DATA_BIDI_LOCAL,
ch->tx_init_max_stream_data_bidi_local))
goto err;
if (!ossl_quic_wire_encode_transport_param_int(&wpkt, QUIC_TPARAM_INITIAL_MAX_STREAM_DATA_BIDI_REMOTE,
ch->tx_init_max_stream_data_bidi_remote))
goto err;
if (!ossl_quic_wire_encode_transport_param_int(&wpkt, QUIC_TPARAM_INITIAL_MAX_STREAM_DATA_UNI,
ch->tx_init_max_stream_data_uni))
goto err;
if (!ossl_quic_wire_encode_transport_param_int(&wpkt, QUIC_TPARAM_INITIAL_MAX_STREAMS_BIDI,
ossl_quic_rxfc_get_cwm(&ch->max_streams_bidi_rxfc)))
goto err;
if (!ossl_quic_wire_encode_transport_param_int(&wpkt, QUIC_TPARAM_INITIAL_MAX_STREAMS_UNI,
ossl_quic_rxfc_get_cwm(&ch->max_streams_uni_rxfc)))
goto err;
if (!WPACKET_finish(&wpkt))
goto err;
wpkt_valid = 0;
if (!WPACKET_get_total_written(&wpkt, &buf_len))
goto err;
ch->local_transport_params = (unsigned char *)buf_mem->data;
buf_mem->data = NULL;
if (!ossl_quic_tls_set_transport_params(ch->qtls, ch->local_transport_params,
buf_len))
goto err;
ok = 1;
err:
if (wpkt_valid)
WPACKET_cleanup(&wpkt);
BUF_MEM_free(buf_mem);
return ok;
}
/*
* QUIC Channel: Ticker-Mutator
* ============================
*/
/*
* The central ticker function called by the reactor. This does everything, or
* at least everything network I/O related. Best effort - not allowed to fail
* "loudly".
*/
static void ch_tick(QUIC_TICK_RESULT *res, void *arg, uint32_t flags)
{
OSSL_TIME now, deadline;
QUIC_CHANNEL *ch = arg;
int channel_only = (flags & QUIC_REACTOR_TICK_FLAG_CHANNEL_ONLY) != 0;
/*
* When we tick the QUIC connection, we do everything we need to do
* periodically. In order, we:
*
* - handle any incoming data from the network;
* - handle any timer events which are due to fire (ACKM, etc.)
* - write any data to the network due to be sent, to the extent
* possible;
* - determine the time at which we should next be ticked.
*/
/* If we are in the TERMINATED state, there is nothing to do. */
if (ossl_quic_channel_is_terminated(ch)) {
res->net_read_desired = 0;
res->net_write_desired = 0;
res->tick_deadline = ossl_time_infinite();
return;
}
/*
* If we are in the TERMINATING state, check if the terminating timer has
* expired.
*/
if (ossl_quic_channel_is_terminating(ch)) {
now = get_time(ch);
if (ossl_time_compare(now, ch->terminate_deadline) >= 0) {
ch_on_terminating_timeout(ch);
res->net_read_desired = 0;
res->net_write_desired = 0;
res->tick_deadline = ossl_time_infinite();
return; /* abort normal processing, nothing to do */
}
}
if (!ch->inhibit_tick) {
/* Handle RXKU timeouts. */
ch_rxku_tick(ch);
/* Handle any incoming data from network. */
ch_rx_pre(ch);
do {
/* Process queued incoming packets. */
ch->did_tls_tick = 0;
ch->have_new_rx_secret = 0;
ch_rx(ch, channel_only);
/*
* Allow the handshake layer to check for any new incoming data and
* generate new outgoing data.
*/
if (!ch->did_tls_tick)
ch_tick_tls(ch, channel_only);
/*
* If the handshake layer gave us a new secret, we need to do RX
* again because packets that were not previously processable and
* were deferred might now be processable.
*
* TODO(QUIC FUTURE): Consider handling this in the yield_secret callback.
*/
} while (ch->have_new_rx_secret);
}
/*
* Handle any timer events which are due to fire; namely, the loss
* detection deadline and the idle timeout.
*
* ACKM ACK generation deadline is polled by TXP, so we don't need to
* handle it here.
*/
now = get_time(ch);
if (ossl_time_compare(now, ch->idle_deadline) >= 0) {
/*
* Idle timeout differs from normal protocol violation because we do
* not send a CONN_CLOSE frame; go straight to TERMINATED.
*/
if (!ch->inhibit_tick)
ch_on_idle_timeout(ch);
res->net_read_desired = 0;
res->net_write_desired = 0;
res->tick_deadline = ossl_time_infinite();
return;
}
if (!ch->inhibit_tick) {
deadline = ossl_ackm_get_loss_detection_deadline(ch->ackm);
if (!ossl_time_is_zero(deadline)
&& ossl_time_compare(now, deadline) >= 0)
ossl_ackm_on_timeout(ch->ackm);
/* If a ping is due, inform TXP. */
if (ossl_time_compare(now, ch->ping_deadline) >= 0) {
int pn_space = ossl_quic_enc_level_to_pn_space(ch->tx_enc_level);
ossl_quic_tx_packetiser_schedule_ack_eliciting(ch->txp, pn_space);
/*
* If we have no CC budget at this time we cannot process the above
* PING request immediately. In any case we have scheduled the
* request so bump the ping deadline. If we don't do this we will
* busy-loop endlessly as the above deadline comparison condition
* will still be met.
*/
ch_update_ping_deadline(ch);
}
/* Write any data to the network due to be sent. */
ch_tx(ch);
/* Do stream GC. */
ossl_quic_stream_map_gc(&ch->qsm);
}
/* Determine the time at which we should next be ticked. */
res->tick_deadline = ch_determine_next_tick_deadline(ch);
/*
* Always process network input unless we are now terminated.
* Although we had not terminated at the beginning of this tick, network
* errors in ch_rx_pre() or ch_tx() may have caused us to transition to the
* Terminated state.
*/
res->net_read_desired = !ossl_quic_channel_is_terminated(ch);
/* We want to write to the network if we have any in our queue. */
res->net_write_desired
= (!ossl_quic_channel_is_terminated(ch)
&& ossl_qtx_get_queue_len_datagrams(ch->qtx) > 0);
}
static int ch_tick_tls(QUIC_CHANNEL *ch, int channel_only)
{
uint64_t error_code;
const char *error_msg;
ERR_STATE *error_state = NULL;
if (channel_only)
return 1;
ch->did_tls_tick = 1;
ossl_quic_tls_tick(ch->qtls);
if (ossl_quic_tls_get_error(ch->qtls, &error_code, &error_msg,
&error_state)) {
ossl_quic_channel_raise_protocol_error_state(ch, error_code, 0,
error_msg, error_state);
return 0;
}
return 1;
}
/* Process incoming datagrams, if any. */
static void ch_rx_pre(QUIC_CHANNEL *ch)
{
int ret;
if (!ch->is_server && !ch->have_sent_any_pkt)
return;
/*
* Get DEMUX to BIO_recvmmsg from the network and queue incoming datagrams
* to the appropriate QRX instance.
*/
ret = ossl_quic_demux_pump(ch->demux);
if (ret == QUIC_DEMUX_PUMP_RES_STATELESS_RESET)
ch_stateless_reset(ch);
else if (ret == QUIC_DEMUX_PUMP_RES_PERMANENT_FAIL)
/*
* We don't care about transient failure, but permanent failure means we
* should tear down the connection as though a protocol violation
* occurred. Skip straight to the Terminating state as there is no point
* trying to send CONNECTION_CLOSE frames if the network BIO is not
* operating correctly.
*/
ch_raise_net_error(ch);
}
/* Check incoming forged packet limit and terminate connection if needed. */
static void ch_rx_check_forged_pkt_limit(QUIC_CHANNEL *ch)
{
uint32_t enc_level;
uint64_t limit = UINT64_MAX, l;
for (enc_level = QUIC_ENC_LEVEL_INITIAL;
enc_level < QUIC_ENC_LEVEL_NUM;
++enc_level)
{
/*
* Different ELs can have different AEADs which can in turn impose
* different limits, so use the lowest value of any currently valid EL.
*/
if ((ch->el_discarded & (1U << enc_level)) != 0)
continue;
if (enc_level > ch->rx_enc_level)
break;
l = ossl_qrx_get_max_forged_pkt_count(ch->qrx, enc_level);
if (l < limit)
limit = l;
}
if (ossl_qrx_get_cur_forged_pkt_count(ch->qrx) < limit)
return;
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_AEAD_LIMIT_REACHED, 0,
"forgery limit");
}
/* Process queued incoming packets and handle frames, if any. */
static int ch_rx(QUIC_CHANNEL *ch, int channel_only)
{
int handled_any = 0;
const int closing = ossl_quic_channel_is_closing(ch);
if (!ch->is_server && !ch->have_sent_any_pkt)
/*
* We have not sent anything yet, therefore there is no need to check
* for incoming data.
*/
return 1;
for (;;) {
assert(ch->qrx_pkt == NULL);
if (!ossl_qrx_read_pkt(ch->qrx, &ch->qrx_pkt))
break;
/* Track the amount of data received while in the closing state */
if (closing)
ossl_quic_tx_packetiser_record_received_closing_bytes(
ch->txp, ch->qrx_pkt->hdr->len);
if (!handled_any) {
ch_update_idle(ch);
ch_update_ping_deadline(ch);
}
ch_rx_handle_packet(ch, channel_only); /* best effort */
/*
* Regardless of the outcome of frame handling, unref the packet.
* This will free the packet unless something added another
* reference to it during frame processing.
*/
ossl_qrx_pkt_release(ch->qrx_pkt);
ch->qrx_pkt = NULL;
ch->have_sent_ack_eliciting_since_rx = 0;
handled_any = 1;
}
ch_rx_check_forged_pkt_limit(ch);
/*
* When in TERMINATING - CLOSING, generate a CONN_CLOSE frame whenever we
* process one or more incoming packets.
*/
if (handled_any && closing)
ch->conn_close_queued = 1;
return 1;
}
static int bio_addr_eq(const BIO_ADDR *a, const BIO_ADDR *b)
{
if (BIO_ADDR_family(a) != BIO_ADDR_family(b))
return 0;
switch (BIO_ADDR_family(a)) {
case AF_INET:
return !memcmp(&a->s_in.sin_addr,
&b->s_in.sin_addr,
sizeof(a->s_in.sin_addr))
&& a->s_in.sin_port == b->s_in.sin_port;
#if OPENSSL_USE_IPV6
case AF_INET6:
return !memcmp(&a->s_in6.sin6_addr,
&b->s_in6.sin6_addr,
sizeof(a->s_in6.sin6_addr))
&& a->s_in6.sin6_port == b->s_in6.sin6_port;
#endif
default:
return 0; /* not supported */
}
return 1;
}
/* Handles the packet currently in ch->qrx_pkt->hdr. */
static void ch_rx_handle_packet(QUIC_CHANNEL *ch, int channel_only)
{
uint32_t enc_level;
int old_have_processed_any_pkt = ch->have_processed_any_pkt;
assert(ch->qrx_pkt != NULL);
/*
* RFC 9000 s. 10.2.1 Closing Connection State:
* An endpoint that is closing is not required to process any
* received frame.
*/
if (!ossl_quic_channel_is_active(ch))
return;
if (ossl_quic_pkt_type_is_encrypted(ch->qrx_pkt->hdr->type)) {
if (!ch->have_received_enc_pkt) {
ch->cur_remote_dcid = ch->init_scid = ch->qrx_pkt->hdr->src_conn_id;
ch->have_received_enc_pkt = 1;
/*
* We change to using the SCID in the first Initial packet as the
* DCID.
*/
ossl_quic_tx_packetiser_set_cur_dcid(ch->txp, &ch->init_scid);
}
enc_level = ossl_quic_pkt_type_to_enc_level(ch->qrx_pkt->hdr->type);
if ((ch->el_discarded & (1U << enc_level)) != 0)
/* Do not process packets from ELs we have already discarded. */
return;
}
/*
* RFC 9000 s. 9.6: "If a client receives packets from a new server address
* when the client has not initiated a migration to that address, the client
* SHOULD discard these packets."
*
* We need to be a bit careful here as due to the BIO abstraction layer an
* application is liable to be weird and lie to us about peer addresses.
* Only apply this check if we actually are using a real AF_INET or AF_INET6
* address.
*/
if (!ch->is_server
&& ch->qrx_pkt->peer != NULL
&& (
BIO_ADDR_family(&ch->cur_peer_addr) == AF_INET
#if OPENSSL_USE_IPV6
|| BIO_ADDR_family(&ch->cur_peer_addr) == AF_INET6
#endif
)
&& !bio_addr_eq(ch->qrx_pkt->peer, &ch->cur_peer_addr))
return;
if (!ch->is_server
&& ch->have_received_enc_pkt
&& ossl_quic_pkt_type_has_scid(ch->qrx_pkt->hdr->type)) {
/*
* RFC 9000 s. 7.2: "Once a client has received a valid Initial packet
* from the server, it MUST discard any subsequent packet it receives on
* that connection with a different SCID."
*/
if (!ossl_quic_conn_id_eq(&ch->qrx_pkt->hdr->src_conn_id,
&ch->init_scid))
return;
}
if (ossl_quic_pkt_type_has_version(ch->qrx_pkt->hdr->type)
&& ch->qrx_pkt->hdr->version != QUIC_VERSION_1)
/*
* RFC 9000 s. 5.2.1: If a client receives a packet that uses a
* different version than it initially selected, it MUST discard the
* packet. We only ever use v1, so require it.
*/
return;
ch->have_processed_any_pkt = 1;
/*
* RFC 9000 s. 17.2: "An endpoint MUST treat receipt of a packet that has a
* non-zero value for [the reserved bits] after removing both packet and
* header protection as a connection error of type PROTOCOL_VIOLATION."
*/
if (ossl_quic_pkt_type_is_encrypted(ch->qrx_pkt->hdr->type)
&& ch->qrx_pkt->hdr->reserved != 0) {
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_PROTOCOL_VIOLATION,
0, "packet header reserved bits");
return;
}
/* Handle incoming packet. */
switch (ch->qrx_pkt->hdr->type) {
case QUIC_PKT_TYPE_RETRY:
if (ch->doing_retry || ch->is_server)
/*
* It is not allowed to ask a client to do a retry more than
* once. Clients may not send retries.
*/
return;
/*
* RFC 9000 s 17.2.5.2: After the client has received and processed an
* Initial or Retry packet from the server, it MUST discard any
* subsequent Retry packets that it receives.
*/
if (ch->have_received_enc_pkt)
return;
if (ch->qrx_pkt->hdr->len <= QUIC_RETRY_INTEGRITY_TAG_LEN)
/* Packets with zero-length Retry Tokens are invalid. */
return;
/*
* TODO(QUIC FUTURE): Theoretically this should probably be in the QRX.
* However because validation is dependent on context (namely the
* client's initial DCID) we can't do this cleanly. In the future we
* should probably add a callback to the QRX to let it call us (via
* the DEMUX) and ask us about the correct original DCID, rather
* than allow the QRX to emit a potentially malformed packet to the
* upper layers. However, special casing this will do for now.
*/
if (!ossl_quic_validate_retry_integrity_tag(ch->libctx,
ch->propq,
ch->qrx_pkt->hdr,
&ch->init_dcid))
/* Malformed retry packet, ignore. */
return;
if (!ch_retry(ch, ch->qrx_pkt->hdr->data,
ch->qrx_pkt->hdr->len - QUIC_RETRY_INTEGRITY_TAG_LEN,
&ch->qrx_pkt->hdr->src_conn_id))
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_INTERNAL_ERROR,
0, "handling retry packet");
break;
case QUIC_PKT_TYPE_0RTT:
if (!ch->is_server)
/* Clients should never receive 0-RTT packets. */
return;
/*
* TODO(QUIC 0RTT): Implement 0-RTT on the server side. We currently
* do not need to implement this as a client can only do 0-RTT if we
* have given it permission to in a previous session.
*/
break;
case QUIC_PKT_TYPE_INITIAL:
case QUIC_PKT_TYPE_HANDSHAKE:
case QUIC_PKT_TYPE_1RTT:
if (ch->is_server && ch->qrx_pkt->hdr->type == QUIC_PKT_TYPE_HANDSHAKE)
/*
* We automatically drop INITIAL EL keys when first successfully
* decrypting a HANDSHAKE packet, as per the RFC.
*/
ch_discard_el(ch, QUIC_ENC_LEVEL_INITIAL);
if (ch->rxku_in_progress
&& ch->qrx_pkt->hdr->type == QUIC_PKT_TYPE_1RTT
&& ch->qrx_pkt->pn >= ch->rxku_trigger_pn
&& ch->qrx_pkt->key_epoch < ossl_qrx_get_key_epoch(ch->qrx)) {
/*
* RFC 9001 s. 6.4: Packets with higher packet numbers MUST be
* protected with either the same or newer packet protection keys
* than packets with lower packet numbers. An endpoint that
* successfully removes protection with old keys when newer keys
* were used for packets with lower packet numbers MUST treat this
* as a connection error of type KEY_UPDATE_ERROR.
*/
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_KEY_UPDATE_ERROR,
0, "new packet with old keys");
break;
}
if (!ch->is_server
&& ch->qrx_pkt->hdr->type == QUIC_PKT_TYPE_INITIAL
&& ch->qrx_pkt->hdr->token_len > 0) {
/*
* RFC 9000 s. 17.2.2: Clients that receive an Initial packet with a
* non-zero Token Length field MUST either discard the packet or
* generate a connection error of type PROTOCOL_VIOLATION.
*
* TODO(QUIC FUTURE): consider the implications of RFC 9000 s. 10.2.3
* Immediate Close during the Handshake:
* However, at the cost of reducing feedback about
* errors for legitimate peers, some forms of denial of
* service can be made more difficult for an attacker
* if endpoints discard illegal packets rather than
* terminating a connection with CONNECTION_CLOSE. For
* this reason, endpoints MAY discard packets rather
* than immediately close if errors are detected in
* packets that lack authentication.
* I.e. should we drop this packet instead of closing the connection?
*/
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_PROTOCOL_VIOLATION,
0, "client received initial token");
break;
}
/* This packet contains frames, pass to the RXDP. */
ossl_quic_handle_frames(ch, ch->qrx_pkt); /* best effort */
if (ch->did_crypto_frame)
ch_tick_tls(ch, channel_only);
break;
case QUIC_PKT_TYPE_VERSION_NEG:
/*
* "A client MUST discard any Version Negotiation packet if it has
* received and successfully processed any other packet."
*/
if (!old_have_processed_any_pkt)
ch_rx_handle_version_neg(ch, ch->qrx_pkt);
break;
default:
assert(0);
break;
}
}
static void ch_rx_handle_version_neg(QUIC_CHANNEL *ch, OSSL_QRX_PKT *pkt)
{
/*
* We do not support version negotiation at this time. As per RFC 9000 s.
* 6.2., we MUST abandon the connection attempt if we receive a Version
* Negotiation packet, unless we have already successfully processed another
* incoming packet, or the packet lists the QUIC version we want to use.
*/
PACKET vpkt;
unsigned long v;
if (!PACKET_buf_init(&vpkt, pkt->hdr->data, pkt->hdr->len))
return;
while (PACKET_remaining(&vpkt) > 0) {
if (!PACKET_get_net_4(&vpkt, &v))
break;
if ((uint32_t)v == QUIC_VERSION_1)
return;
}
/* No match, this is a failure case. */
ch_raise_version_neg_failure(ch);
}
static void ch_raise_version_neg_failure(QUIC_CHANNEL *ch)
{
QUIC_TERMINATE_CAUSE tcause = {0};
tcause.error_code = QUIC_ERR_CONNECTION_REFUSED;
tcause.reason = "version negotiation failure";
tcause.reason_len = strlen(tcause.reason);
/*
* Skip TERMINATING state; this is not considered a protocol error and we do
* not send CONNECTION_CLOSE.
*/
ch_start_terminating(ch, &tcause, 1);
}
/*
* This is called by the demux when we get a packet not destined for any known
* DCID.
*/
static void ch_default_packet_handler(QUIC_URXE *e, void *arg)
{
QUIC_CHANNEL *ch = arg;
PACKET pkt;
QUIC_PKT_HDR hdr;
if (!ossl_assert(ch->is_server))
goto undesirable;
/*
* We only support one connection to our server currently, so if we already
* started one, ignore any new connection attempts.
*/
if (ch->state != QUIC_CHANNEL_STATE_IDLE)
goto undesirable;
/*
* We have got a packet for an unknown DCID. This might be an attempt to
* open a new connection.
*/
if (e->data_len < QUIC_MIN_INITIAL_DGRAM_LEN)
goto undesirable;
if (!PACKET_buf_init(&pkt, ossl_quic_urxe_data(e), e->data_len))
goto err;
/*
* We set short_conn_id_len to SIZE_MAX here which will cause the decode
* operation to fail if we get a 1-RTT packet. This is fine since we only
* care about Initial packets.
*/
if (!ossl_quic_wire_decode_pkt_hdr(&pkt, SIZE_MAX, 1, 0, &hdr, NULL))
goto undesirable;
switch (hdr.version) {
case QUIC_VERSION_1:
break;
case QUIC_VERSION_NONE:
default:
/* Unknown version or proactive version negotiation request, bail. */
/* TODO(QUIC SERVER): Handle version negotiation on server side */
goto undesirable;
}
/*
* We only care about Initial packets which might be trying to establish a
* connection.
*/
if (hdr.type != QUIC_PKT_TYPE_INITIAL)
goto undesirable;
/*
* Assume this is a valid attempt to initiate a connection.
*
* We do not register the DCID in the initial packet we received and that
* DCID is not actually used again, thus after provisioning the correct
* Initial keys derived from it (which is done in the call below) we pass
* the received packet directly to the QRX so that it can process it as a
* one-time thing, instead of going through the usual DEMUX DCID-based
* routing.
*/
if (!ch_server_on_new_conn(ch, &e->peer,
&hdr.src_conn_id,
&hdr.dst_conn_id))
goto err;
ossl_qrx_inject_urxe(ch->qrx, e);
return;
err:
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_INTERNAL_ERROR, 0,
"internal error");
undesirable:
ossl_quic_demux_release_urxe(ch->demux, e);
}
/* Try to generate packets and if possible, flush them to the network. */
static int ch_tx(QUIC_CHANNEL *ch)
{
QUIC_TXP_STATUS status;
int res;
/*
* RFC 9000 s. 10.2.2: Draining Connection State:
* While otherwise identical to the closing state, an endpoint
* in the draining state MUST NOT send any packets.
* and:
* An endpoint MUST NOT send further packets.
*/
if (ossl_quic_channel_is_draining(ch))
return 0;
if (ossl_quic_channel_is_closing(ch)) {
/*
* While closing, only send CONN_CLOSE if we've received more traffic
* from the peer. Once we tell the TXP to generate CONN_CLOSE, all
* future calls to it generate CONN_CLOSE frames, so otherwise we would
* just constantly generate CONN_CLOSE frames.
*
* Confirming to RFC 9000 s. 10.2.1 Closing Connection State:
* An endpoint SHOULD limit the rate at which it generates
* packets in the closing state.
*/
if (!ch->conn_close_queued)
return 0;
ch->conn_close_queued = 0;
}
/* Do TXKU if we need to. */
ch_maybe_trigger_spontaneous_txku(ch);
ch->rxku_pending_confirm_done = 0;
/* Loop until we stop generating packets to send */
do {
/*
* Send packet, if we need to. Best effort. The TXP consults the CC and
* applies any limitations imposed by it, so we don't need to do it here.
*
* Best effort. In particular if TXP fails for some reason we should
* still flush any queued packets which we already generated.
*/
res = ossl_quic_tx_packetiser_generate(ch->txp, &status);
if (status.sent_pkt > 0) {
ch->have_sent_any_pkt = 1; /* Packet(s) were sent */
/*
* RFC 9000 s. 10.1. 'An endpoint also restarts its idle timer when
* sending an ack-eliciting packet if no other ack-eliciting packets
* have been sent since last receiving and processing a packet.'
*/
if (status.sent_ack_eliciting
&& !ch->have_sent_ack_eliciting_since_rx) {
ch_update_idle(ch);
ch->have_sent_ack_eliciting_since_rx = 1;
}
if (!ch->is_server && status.sent_handshake)
/*
* RFC 9001 s. 4.9.1: A client MUST discard Initial keys when it
* first sends a Handshake packet.
*/
ch_discard_el(ch, QUIC_ENC_LEVEL_INITIAL);
if (ch->rxku_pending_confirm_done)
ch->rxku_pending_confirm = 0;
ch_update_ping_deadline(ch);
}
if (!res) {
/*
* One case where TXP can fail is if we reach a TX PN of 2**62 - 1.
* As per RFC 9000 s. 12.3, if this happens we MUST close the
* connection without sending a CONNECTION_CLOSE frame. This is
* actually handled as an emergent consequence of our design, as the
* TX packetiser will never transmit another packet when the TX PN
* reaches the limit.
*
* Calling the below function terminates the connection; its attempt
* to schedule a CONNECTION_CLOSE frame will not actually cause a
* packet to be transmitted for this reason.
*/
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_INTERNAL_ERROR,
0,
"internal error (txp generate)");
break;
}
} while (status.sent_pkt > 0);
/* Flush packets to network. */
switch (ossl_qtx_flush_net(ch->qtx)) {
case QTX_FLUSH_NET_RES_OK:
case QTX_FLUSH_NET_RES_TRANSIENT_FAIL:
/* Best effort, done for now. */
break;
case QTX_FLUSH_NET_RES_PERMANENT_FAIL:
default:
/* Permanent underlying network BIO, start terminating. */
ch_raise_net_error(ch);
break;
}
return 1;
}
/* Determine next tick deadline. */
static OSSL_TIME ch_determine_next_tick_deadline(QUIC_CHANNEL *ch)
{
OSSL_TIME deadline;
int i;
if (ossl_quic_channel_is_terminated(ch))
return ossl_time_infinite();
deadline = ossl_ackm_get_loss_detection_deadline(ch->ackm);
if (ossl_time_is_zero(deadline))
deadline = ossl_time_infinite();
/*
* Check the ack deadline for all enc_levels that are actually provisioned.
* ACKs aren't restricted by CC.
*/
for (i = 0; i < QUIC_ENC_LEVEL_NUM; i++) {
if (ossl_qtx_is_enc_level_provisioned(ch->qtx, i)) {
deadline = ossl_time_min(deadline,
ossl_ackm_get_ack_deadline(ch->ackm,
ossl_quic_enc_level_to_pn_space(i)));
}
}
/*
* When do we need to send an ACK-eliciting packet to reset the idle
* deadline timer for the peer?
*/
if (!ossl_time_is_infinite(ch->ping_deadline))
deadline = ossl_time_min(deadline, ch->ping_deadline);
/* Apply TXP wakeup deadline. */
deadline = ossl_time_min(deadline,
ossl_quic_tx_packetiser_get_deadline(ch->txp));
/* Is the terminating timer armed? */
if (ossl_quic_channel_is_terminating(ch))
deadline = ossl_time_min(deadline,
ch->terminate_deadline);
else if (!ossl_time_is_infinite(ch->idle_deadline))
deadline = ossl_time_min(deadline,
ch->idle_deadline);
/* When does the RXKU process complete? */
if (ch->rxku_in_progress)
deadline = ossl_time_min(deadline, ch->rxku_update_end_deadline);
return deadline;
}
/*
* QUIC Channel: Network BIO Configuration
* =======================================
*/
/* Determines whether we can support a given poll descriptor. */
static int validate_poll_descriptor(const BIO_POLL_DESCRIPTOR *d)
{
if (d->type == BIO_POLL_DESCRIPTOR_TYPE_SOCK_FD && d->value.fd < 0) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
return 0;
}
return 1;
}
BIO *ossl_quic_channel_get_net_rbio(QUIC_CHANNEL *ch)
{
return ch->net_rbio;
}
BIO *ossl_quic_channel_get_net_wbio(QUIC_CHANNEL *ch)
{
return ch->net_wbio;
}
static int ch_update_poll_desc(QUIC_CHANNEL *ch, BIO *net_bio, int for_write)
{
BIO_POLL_DESCRIPTOR d = {0};
if (net_bio == NULL
|| (!for_write && !BIO_get_rpoll_descriptor(net_bio, &d))
|| (for_write && !BIO_get_wpoll_descriptor(net_bio, &d)))
/* Non-pollable BIO */
d.type = BIO_POLL_DESCRIPTOR_TYPE_NONE;
if (!validate_poll_descriptor(&d))
return 0;
if (for_write)
ossl_quic_reactor_set_poll_w(&ch->rtor, &d);
else
ossl_quic_reactor_set_poll_r(&ch->rtor, &d);
return 1;
}
int ossl_quic_channel_update_poll_descriptors(QUIC_CHANNEL *ch)
{
int ok = 1;
if (!ch_update_poll_desc(ch, ch->net_rbio, /*for_write=*/0))
ok = 0;
if (!ch_update_poll_desc(ch, ch->net_wbio, /*for_write=*/1))
ok = 0;
return ok;
}
/*
* QUIC_CHANNEL does not ref any BIO it is provided with, nor is any ref
* transferred to it. The caller (i.e., QUIC_CONNECTION) is responsible for
* ensuring the BIO lasts until the channel is freed or the BIO is switched out
* for another BIO by a subsequent successful call to this function.
*/
int ossl_quic_channel_set_net_rbio(QUIC_CHANNEL *ch, BIO *net_rbio)
{
if (ch->net_rbio == net_rbio)
return 1;
if (!ch_update_poll_desc(ch, net_rbio, /*for_write=*/0))
return 0;
ossl_quic_demux_set_bio(ch->demux, net_rbio);
ch->net_rbio = net_rbio;
return 1;
}
int ossl_quic_channel_set_net_wbio(QUIC_CHANNEL *ch, BIO *net_wbio)
{
if (ch->net_wbio == net_wbio)
return 1;
if (!ch_update_poll_desc(ch, net_wbio, /*for_write=*/1))
return 0;
ossl_qtx_set_bio(ch->qtx, net_wbio);
ch->net_wbio = net_wbio;
return 1;
}
/*
* QUIC Channel: Lifecycle Events
* ==============================
*/
int ossl_quic_channel_start(QUIC_CHANNEL *ch)
{
if (ch->is_server)
/*
* This is not used by the server. The server moves to active
* automatically on receiving an incoming connection.
*/
return 0;
if (ch->state != QUIC_CHANNEL_STATE_IDLE)
/* Calls to connect are idempotent */
return 1;
/* Inform QTX of peer address. */
if (!ossl_quic_tx_packetiser_set_peer(ch->txp, &ch->cur_peer_addr))
return 0;
/* Plug in secrets for the Initial EL. */
if (!ossl_quic_provide_initial_secret(ch->libctx,
ch->propq,
&ch->init_dcid,
ch->is_server,
ch->qrx, ch->qtx))
return 0;
/* Change state. */
ch->state = QUIC_CHANNEL_STATE_ACTIVE;
ch->doing_proactive_ver_neg = 0; /* not currently supported */
/* Handshake layer: start (e.g. send CH). */
if (!ch_tick_tls(ch, /*channel_only=*/0))
return 0;
ossl_quic_reactor_tick(&ch->rtor, 0); /* best effort */
return 1;
}
/* Start a locally initiated connection shutdown. */
void ossl_quic_channel_local_close(QUIC_CHANNEL *ch, uint64_t app_error_code,
const char *app_reason)
{
QUIC_TERMINATE_CAUSE tcause = {0};
if (ossl_quic_channel_is_term_any(ch))
return;
tcause.app = 1;
tcause.error_code = app_error_code;
tcause.reason = app_reason;
tcause.reason_len = app_reason != NULL ? strlen(app_reason) : 0;
ch_start_terminating(ch, &tcause, 0);
}
static void free_token(const unsigned char *buf, size_t buf_len, void *arg)
{
OPENSSL_free((unsigned char *)buf);
}
/* Called when a server asks us to do a retry. */
static int ch_retry(QUIC_CHANNEL *ch,
const unsigned char *retry_token,
size_t retry_token_len,
const QUIC_CONN_ID *retry_scid)
{
void *buf;
/*
* RFC 9000 s. 17.2.5.1: "A client MUST discard a Retry packet that contains
* a SCID field that is identical to the DCID field of its initial packet."
*/
if (ossl_quic_conn_id_eq(&ch->init_dcid, retry_scid))
return 1;
/* We change to using the SCID in the Retry packet as the DCID. */
if (!ossl_quic_tx_packetiser_set_cur_dcid(ch->txp, retry_scid))
return 0;
/*
* Now we retry. We will release the Retry packet immediately, so copy
* the token.
*/
if ((buf = OPENSSL_memdup(retry_token, retry_token_len)) == NULL)
return 0;
if (!ossl_quic_tx_packetiser_set_initial_token(ch->txp, buf,
retry_token_len,
free_token, NULL)) {
/*
* This may fail if the token we receive is too big for us to ever be
* able to transmit in an outgoing Initial packet.
*/
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_INVALID_TOKEN, 0,
"received oversize token");
OPENSSL_free(buf);
return 0;
}
ch->retry_scid = *retry_scid;
ch->doing_retry = 1;
/*
* We need to stimulate the Initial EL to generate the first CRYPTO frame
* again. We can do this most cleanly by simply forcing the ACKM to consider
* the first Initial packet as lost, which it effectively was as the server
* hasn't processed it. This also maintains the desired behaviour with e.g.
* PNs not resetting and so on.
*
* The PN we used initially is always zero, because QUIC does not allow
* repeated retries.
*/
if (!ossl_ackm_mark_packet_pseudo_lost(ch->ackm, QUIC_PN_SPACE_INITIAL,
/*PN=*/0))
return 0;
/*
* Plug in new secrets for the Initial EL. This is the only time we change
* the secrets for an EL after we already provisioned it.
*/
if (!ossl_quic_provide_initial_secret(ch->libctx,
ch->propq,
&ch->retry_scid,
/*is_server=*/0,
ch->qrx, ch->qtx))
return 0;
return 1;
}
/* Called when an EL is to be discarded. */
static int ch_discard_el(QUIC_CHANNEL *ch,
uint32_t enc_level)
{
if (!ossl_assert(enc_level < QUIC_ENC_LEVEL_1RTT))
return 0;
if ((ch->el_discarded & (1U << enc_level)) != 0)
/* Already done. */
return 1;
/* Best effort for all of these. */
ossl_quic_tx_packetiser_discard_enc_level(ch->txp, enc_level);
ossl_qrx_discard_enc_level(ch->qrx, enc_level);
ossl_qtx_discard_enc_level(ch->qtx, enc_level);
if (enc_level != QUIC_ENC_LEVEL_0RTT) {
uint32_t pn_space = ossl_quic_enc_level_to_pn_space(enc_level);
ossl_ackm_on_pkt_space_discarded(ch->ackm, pn_space);
/* We should still have crypto streams at this point. */
if (!ossl_assert(ch->crypto_send[pn_space] != NULL)
|| !ossl_assert(ch->crypto_recv[pn_space] != NULL))
return 0;
/* Get rid of the crypto stream state for the EL. */
ossl_quic_sstream_free(ch->crypto_send[pn_space]);
ch->crypto_send[pn_space] = NULL;
ossl_quic_rstream_free(ch->crypto_recv[pn_space]);
ch->crypto_recv[pn_space] = NULL;
}
ch->el_discarded |= (1U << enc_level);
return 1;
}
/* Intended to be called by the RXDP. */
int ossl_quic_channel_on_handshake_confirmed(QUIC_CHANNEL *ch)
{
if (ch->handshake_confirmed)
return 1;
if (!ch->handshake_complete) {
/*
* Does not make sense for handshake to be confirmed before it is
* completed.
*/
ossl_quic_channel_raise_protocol_error(ch, QUIC_ERR_PROTOCOL_VIOLATION,
OSSL_QUIC_FRAME_TYPE_HANDSHAKE_DONE,
"handshake cannot be confirmed "
"before it is completed");
return 0;
}
ch_discard_el(ch, QUIC_ENC_LEVEL_HANDSHAKE);
ch->handshake_confirmed = 1;
ossl_ackm_on_handshake_confirmed(ch->ackm);
return 1;
}
/*
* Master function used when we want to start tearing down a connection:
*
* - If the connection is still IDLE we can go straight to TERMINATED;
*
* - If we are already TERMINATED this is a no-op.
*
* - If we are TERMINATING - CLOSING and we have now got a CONNECTION_CLOSE
* from the peer (tcause->remote == 1), we move to TERMINATING - DRAINING.
*
* - If we are TERMINATING - DRAINING, we remain here until the terminating
* timer expires.
*
* - Otherwise, we are in ACTIVE and move to TERMINATING - CLOSING.
* if we caused the termination (e.g. we have sent a CONNECTION_CLOSE). Note
* that we are considered to have caused a termination if we sent the first
* CONNECTION_CLOSE frame, even if it is caused by a peer protocol
* violation. If the peer sent the first CONNECTION_CLOSE frame, we move to
* TERMINATING - DRAINING.
*
* We record the termination cause structure passed on the first call only.
* Any successive calls have their termination cause data discarded;
* once we start sending a CONNECTION_CLOSE frame, we don't change the details
* in it.
*
* This conforms to RFC 9000 s. 10.2.1: Closing Connection State:
* To minimize the state that an endpoint maintains for a closing
* connection, endpoints MAY send the exact same packet in response
* to any received packet.
*
* We don't drop any connection state (specifically packet protection keys)
* even though we are permitted to. This conforms to RFC 9000 s. 10.2.1:
* Closing Connection State:
* An endpoint MAY retain packet protection keys for incoming
* packets to allow it to read and process a CONNECTION_CLOSE frame.
*
* Note that we do not conform to these two from the same section:
* An endpoint's selected connection ID and the QUIC version
* are sufficient information to identify packets for a closing
* connection; the endpoint MAY discard all other connection state.
* and:
* An endpoint MAY drop packet protection keys when entering the
* closing state and send a packet containing a CONNECTION_CLOSE
* frame in response to any UDP datagram that is received.
*/
static void copy_tcause(QUIC_TERMINATE_CAUSE *dst,
const QUIC_TERMINATE_CAUSE *src)
{
dst->error_code = src->error_code;
dst->frame_type = src->frame_type;
dst->app = src->app;
dst->remote = src->remote;
dst->reason = NULL;
dst->reason_len = 0;
if (src->reason != NULL && src->reason_len > 0) {
size_t l = src->reason_len;
char *r;
if (l >= SIZE_MAX)
--l;
/*
* If this fails, dst->reason becomes NULL and we simply do not use a
* reason. This ensures termination is infallible.
*/
dst->reason = r = OPENSSL_memdup(src->reason, l + 1);
if (r == NULL)
return;
r[l] = '\0';
dst->reason_len = l;
}
}
static void ch_start_terminating(QUIC_CHANNEL *ch,
const QUIC_TERMINATE_CAUSE *tcause,
int force_immediate)
{
/* No point sending anything if we haven't sent anything yet. */
if (!ch->have_sent_any_pkt)
force_immediate = 1;
switch (ch->state) {
default:
case QUIC_CHANNEL_STATE_IDLE:
copy_tcause(&ch->terminate_cause, tcause);
ch_on_terminating_timeout(ch);
break;
case QUIC_CHANNEL_STATE_ACTIVE:
copy_tcause(&ch->terminate_cause, tcause);
if (!force_immediate) {
ch->state = tcause->remote ? QUIC_CHANNEL_STATE_TERMINATING_DRAINING
: QUIC_CHANNEL_STATE_TERMINATING_CLOSING;
/*
* RFC 9000 s. 10.2 Immediate Close
* These states SHOULD persist for at least three times
* the current PTO interval as defined in [QUIC-RECOVERY].
*/
ch->terminate_deadline
= ossl_time_add(get_time(ch),
ossl_time_multiply(ossl_ackm_get_pto_duration(ch->ackm),
3));
if (!tcause->remote) {
OSSL_QUIC_FRAME_CONN_CLOSE f = {0};
/* best effort */
f.error_code = ch->terminate_cause.error_code;
f.frame_type = ch->terminate_cause.frame_type;
f.is_app = ch->terminate_cause.app;
f.reason = (char *)ch->terminate_cause.reason;
f.reason_len = ch->terminate_cause.reason_len;
ossl_quic_tx_packetiser_schedule_conn_close(ch->txp, &f);
/*
* RFC 9000 s. 10.2.2 Draining Connection State:
* An endpoint that receives a CONNECTION_CLOSE frame MAY
* send a single packet containing a CONNECTION_CLOSE
* frame before entering the draining state, using a
* NO_ERROR code if appropriate
*/
ch->conn_close_queued = 1;
}
} else {
ch_on_terminating_timeout(ch);
}
break;
case QUIC_CHANNEL_STATE_TERMINATING_CLOSING:
if (force_immediate)
ch_on_terminating_timeout(ch);
else if (tcause->remote)
/*
* RFC 9000 s. 10.2.2 Draining Connection State:
* An endpoint MAY enter the draining state from the
* closing state if it receives a CONNECTION_CLOSE frame,
* which indicates that the peer is also closing or draining.
*/
ch->state = QUIC_CHANNEL_STATE_TERMINATING_DRAINING;
break;
case QUIC_CHANNEL_STATE_TERMINATING_DRAINING:
/*
* Other than in the force-immediate case, we remain here until the
* timeout expires.
*/
if (force_immediate)
ch_on_terminating_timeout(ch);
break;
case QUIC_CHANNEL_STATE_TERMINATED:
/* No-op. */
break;
}
}
/* For RXDP use. */
void ossl_quic_channel_on_remote_conn_close(QUIC_CHANNEL *ch,
OSSL_QUIC_FRAME_CONN_CLOSE *f)
{
QUIC_TERMINATE_CAUSE tcause = {0};
if (!ossl_quic_channel_is_active(ch))
return;
tcause.remote = 1;
tcause.app = f->is_app;
tcause.error_code = f->error_code;
tcause.frame_type = f->frame_type;
tcause.reason = f->reason;
tcause.reason_len = f->reason_len;
ch_start_terminating(ch, &tcause, 0);
}
static void free_frame_data(unsigned char *buf, size_t buf_len, void *arg)
{
OPENSSL_free(buf);
}
static int ch_enqueue_retire_conn_id(QUIC_CHANNEL *ch, uint64_t seq_num)
{
BUF_MEM *buf_mem = NULL;
WPACKET wpkt;
size_t l;
chan_remove_reset_token(ch, seq_num);
if ((buf_mem = BUF_MEM_new()) == NULL)
goto err;
if (!WPACKET_init(&wpkt, buf_mem))
goto err;
if (!ossl_quic_wire_encode_frame_retire_conn_id(&wpkt, seq_num)) {
WPACKET_cleanup(&wpkt);
goto err;
}
WPACKET_finish(&wpkt);
if (!WPACKET_get_total_written(&wpkt, &l))
goto err;
if (ossl_quic_cfq_add_frame(ch->cfq, 1, QUIC_PN_SPACE_APP,
OSSL_QUIC_FRAME_TYPE_RETIRE_CONN_ID, 0,
(unsigned char *)buf_mem->data, l,
free_frame_data, NULL) == NULL)
goto err;
buf_mem->data = NULL;
BUF_MEM_free(buf_mem);
return 1;
err:
ossl_quic_channel_raise_protocol_error(ch,
QUIC_ERR_INTERNAL_ERROR,
OSSL_QUIC_FRAME_TYPE_NEW_CONN_ID,
"internal error enqueueing retire conn id");
BUF_MEM_free(buf_mem);
return 0;
}
void ossl_quic_channel_on_new_conn_id(QUIC_CHANNEL *ch,
OSSL_QUIC_FRAME_NEW_CONN_ID *f)
{
uint64_t new_remote_seq_num = ch->cur_remote_seq_num;
uint64_t new_retire_prior_to = ch->cur_retire_prior_to;
if (!ossl_quic_channel_is_active(ch))
return;
/* We allow only two active connection ids; first check some constraints */
if (ch->cur_remote_dcid.id_len == 0) {
/* Changing from 0 length connection id is disallowed */
ossl_quic_channel_raise_protocol_error(ch,
QUIC_ERR_PROTOCOL_VIOLATION,
OSSL_QUIC_FRAME_TYPE_NEW_CONN_ID,
"zero length connection id in use");
return;
}
if (f->seq_num > new_remote_seq_num)
new_remote_seq_num = f->seq_num;
if (f->retire_prior_to > new_retire_prior_to)
new_retire_prior_to = f->retire_prior_to;
/*
* RFC 9000-5.1.1: An endpoint MUST NOT provide more connection IDs
* than the peer's limit.
*
* After processing a NEW_CONNECTION_ID frame and adding and retiring
* active connection IDs, if the number of active connection IDs exceeds
* the value advertised in its active_connection_id_limit transport
* parameter, an endpoint MUST close the connection with an error of
* type CONNECTION_ID_LIMIT_ERROR.
*/
if (new_remote_seq_num - new_retire_prior_to > 1) {
ossl_quic_channel_raise_protocol_error(ch,
QUIC_ERR_CONNECTION_ID_LIMIT_ERROR,
OSSL_QUIC_FRAME_TYPE_NEW_CONN_ID,
"active_connection_id limit violated");
return;
}
/*
* RFC 9000-5.1.1: An endpoint MAY send connection IDs that temporarily
* exceed a peer's limit if the NEW_CONNECTION_ID frame also requires
* the retirement of any excess, by including a sufficiently large
* value in the Retire Prior To field.
*
* RFC 9000-5.1.2: An endpoint SHOULD allow for sending and tracking
* a number of RETIRE_CONNECTION_ID frames of at least twice the value
* of the active_connection_id_limit transport parameter. An endpoint
* MUST NOT forget a connection ID without retiring it, though it MAY
* choose to treat having connection IDs in need of retirement that
* exceed this limit as a connection error of type CONNECTION_ID_LIMIT_ERROR.
*
* We are a little bit more liberal than the minimum mandated.
*/
if (new_retire_prior_to - ch->cur_retire_prior_to > 10) {
ossl_quic_channel_raise_protocol_error(ch,
QUIC_ERR_CONNECTION_ID_LIMIT_ERROR,
OSSL_QUIC_FRAME_TYPE_NEW_CONN_ID,
"retiring connection id limit violated");
return;
}
if (new_remote_seq_num > ch->cur_remote_seq_num) {
/* Add new stateless reset token */
if (!chan_add_reset_token(ch, f->stateless_reset.token,
new_remote_seq_num)) {
ossl_quic_channel_raise_protocol_error(
ch, QUIC_ERR_CONNECTION_ID_LIMIT_ERROR,
OSSL_QUIC_FRAME_TYPE_NEW_CONN_ID,
"unable to store stateless reset token");
return;
}
ch->cur_remote_seq_num = new_remote_seq_num;
ch->cur_remote_dcid = f->conn_id;
ossl_quic_tx_packetiser_set_cur_dcid(ch->txp, &ch->cur_remote_dcid);
}
/*
* RFC 9000-5.1.2: Upon receipt of an increased Retire Prior To
* field, the peer MUST stop using the corresponding connection IDs
* and retire them with RETIRE_CONNECTION_ID frames before adding the
* newly provided connection ID to the set of active connection IDs.
*/
/*
* Note: RFC 9000 s. 19.15 says:
* "An endpoint that receives a NEW_CONNECTION_ID frame with a sequence
* number smaller than the Retire Prior To field of a previously received
* NEW_CONNECTION_ID frame MUST send a corresponding
* RETIRE_CONNECTION_ID frame that retires the newly received connection
* ID, unless it has already done so for that sequence number."
*
* Since we currently always queue RETIRE_CONN_ID frames based on the Retire
* Prior To field of a NEW_CONNECTION_ID frame immediately upon receiving
* that NEW_CONNECTION_ID frame, by definition this will always be met.
* This may change in future when we change our CID handling.
*/
while (new_retire_prior_to > ch->cur_retire_prior_to) {
if (!ch_enqueue_retire_conn_id(ch, ch->cur_retire_prior_to))
break;
++ch->cur_retire_prior_to;
}
}
static void ch_save_err_state(QUIC_CHANNEL *ch)
{
if (ch->err_state == NULL)
ch->err_state = OSSL_ERR_STATE_new();
if (ch->err_state == NULL)
return;
OSSL_ERR_STATE_save(ch->err_state);
}
static void ch_stateless_reset(QUIC_CHANNEL *ch)
{
QUIC_TERMINATE_CAUSE tcause = {0};
tcause.error_code = QUIC_ERR_NO_ERROR;
ch_start_terminating(ch, &tcause, 1);
}
static void ch_raise_net_error(QUIC_CHANNEL *ch)
{
QUIC_TERMINATE_CAUSE tcause = {0};
ch->net_error = 1;
ERR_raise_data(ERR_LIB_SSL, SSL_R_QUIC_NETWORK_ERROR,
"connection terminated due to network error");
ch_save_err_state(ch);
tcause.error_code = QUIC_ERR_INTERNAL_ERROR;
/*
* Skip Terminating state and go directly to Terminated, no point trying to
* send CONNECTION_CLOSE if we cannot communicate.
*/
ch_start_terminating(ch, &tcause, 1);
}
int ossl_quic_channel_net_error(QUIC_CHANNEL *ch)
{
return ch->net_error;
}
void ossl_quic_channel_restore_err_state(QUIC_CHANNEL *ch)
{
if (ch == NULL)
return;
OSSL_ERR_STATE_restore(ch->err_state);
}
void ossl_quic_channel_raise_protocol_error_loc(QUIC_CHANNEL *ch,
uint64_t error_code,
uint64_t frame_type,
const char *reason,
ERR_STATE *err_state,
const char *src_file,
int src_line,
const char *src_func)
{
QUIC_TERMINATE_CAUSE tcause = {0};
int err_reason = error_code == QUIC_ERR_INTERNAL_ERROR
? ERR_R_INTERNAL_ERROR : SSL_R_QUIC_PROTOCOL_ERROR;
const char *err_str = ossl_quic_err_to_string(error_code);
const char *err_str_pfx = " (", *err_str_sfx = ")";
const char *ft_str = NULL;
const char *ft_str_pfx = " (", *ft_str_sfx = ")";
if (ch->protocol_error)
/* Only the first call to this function matters. */
return;
if (err_str == NULL) {
err_str = "";
err_str_pfx = "";
err_str_sfx = "";
}
/*
* If we were provided an underlying error state, restore it and then append
* our ERR on top as a "cover letter" error.
*/
if (err_state != NULL)
OSSL_ERR_STATE_restore(err_state);
if (frame_type != 0) {
ft_str = ossl_quic_frame_type_to_string(frame_type);
if (ft_str == NULL) {
ft_str = "";
ft_str_pfx = "";
ft_str_sfx = "";
}
ERR_raise_data(ERR_LIB_SSL, err_reason,
"QUIC error code: 0x%llx%s%s%s "
"(triggered by frame type: 0x%llx%s%s%s), reason: \"%s\"",
(unsigned long long) error_code,
err_str_pfx, err_str, err_str_sfx,
(unsigned long long) frame_type,
ft_str_pfx, ft_str, ft_str_sfx,
reason);
} else {
ERR_raise_data(ERR_LIB_SSL, err_reason,
"QUIC error code: 0x%llx%s%s%s, reason: \"%s\"",
(unsigned long long) error_code,
err_str_pfx, err_str, err_str_sfx,
reason);
}
if (src_file != NULL)
ERR_set_debug(src_file, src_line, src_func);
ch_save_err_state(ch);
tcause.error_code = error_code;
tcause.frame_type = frame_type;
tcause.reason = reason;
tcause.reason_len = strlen(reason);
ch->protocol_error = 1;
ch_start_terminating(ch, &tcause, 0);
}
/*
* Called once the terminating timer expires, meaning we move from TERMINATING
* to TERMINATED.
*/
static void ch_on_terminating_timeout(QUIC_CHANNEL *ch)
{
ch->state = QUIC_CHANNEL_STATE_TERMINATED;
}
/*
* Determines the effective idle timeout duration. This is based on the idle
* timeout values that we and our peer signalled in transport parameters
* but have some limits applied.
*/
static OSSL_TIME ch_get_effective_idle_timeout_duration(QUIC_CHANNEL *ch)
{
OSSL_TIME pto;
if (ch->max_idle_timeout == 0)
return ossl_time_infinite();
/*
* RFC 9000 s. 10.1: Idle Timeout
* To avoid excessively small idle timeout periods, endpoints
* MUST increase the idle timeout period to be at least three
* times the current Probe Timeout (PTO). This allows for
* multiple PTOs to expire, and therefore multiple probes to
* be sent and lost, prior to idle timeout.
*/
pto = ossl_ackm_get_pto_duration(ch->ackm);
return ossl_time_max(ossl_ms2time(ch->max_idle_timeout),
ossl_time_multiply(pto, 3));
}
/*
* Updates our idle deadline. Called when an event happens which should bump the
* idle timeout.
*/
static void ch_update_idle(QUIC_CHANNEL *ch)
{
ch->idle_deadline = ossl_time_add(get_time(ch),
ch_get_effective_idle_timeout_duration(ch));
}
/*
* Updates our ping deadline, which determines when we next generate a ping if
* we don't have any other ACK-eliciting frames to send.
*/
static void ch_update_ping_deadline(QUIC_CHANNEL *ch)
{
OSSL_TIME max_span, idle_duration;
idle_duration = ch_get_effective_idle_timeout_duration(ch);
if (ossl_time_is_infinite(idle_duration)) {
ch->ping_deadline = ossl_time_infinite();
return;
}
/*
* Maximum amount of time without traffic before we send a PING to keep
* the connection open. Usually we use max_idle_timeout/2, but ensure
* the period never exceeds the assumed NAT interval to ensure NAT
* devices don't have their state time out (RFC 9000 s. 10.1.2).
*/
max_span = ossl_time_divide(idle_duration, 2);
max_span = ossl_time_min(max_span, MAX_NAT_INTERVAL);
ch->ping_deadline = ossl_time_add(get_time(ch), max_span);
}
/* Called when the idle timeout expires. */
static void ch_on_idle_timeout(QUIC_CHANNEL *ch)
{
/*
* Idle timeout does not have an error code associated with it because a
* CONN_CLOSE is never sent for it. We shouldn't use this data once we reach
* TERMINATED anyway.
*/
ch->terminate_cause.app = 0;
ch->terminate_cause.error_code = UINT64_MAX;
ch->terminate_cause.frame_type = 0;
ch->state = QUIC_CHANNEL_STATE_TERMINATED;
}
/* Called when we, as a server, get a new incoming connection. */
static int ch_server_on_new_conn(QUIC_CHANNEL *ch, const BIO_ADDR *peer,
const QUIC_CONN_ID *peer_scid,
const QUIC_CONN_ID *peer_dcid)
{
if (!ossl_assert(ch->state == QUIC_CHANNEL_STATE_IDLE && ch->is_server))
return 0;
/* Generate a SCID we will use for the connection. */
if (!gen_rand_conn_id(ch->libctx, INIT_DCID_LEN,
&ch->cur_local_cid))
return 0;
/* Note our newly learnt peer address and CIDs. */
ch->cur_peer_addr = *peer;
ch->init_dcid = *peer_dcid;
ch->cur_remote_dcid = *peer_scid;
/* Inform QTX of peer address. */
if (!ossl_quic_tx_packetiser_set_peer(ch->txp, &ch->cur_peer_addr))
return 0;
/* Inform TXP of desired CIDs. */
if (!ossl_quic_tx_packetiser_set_cur_dcid(ch->txp, &ch->cur_remote_dcid))
return 0;
if (!ossl_quic_tx_packetiser_set_cur_scid(ch->txp, &ch->cur_local_cid))
return 0;
/* Plug in secrets for the Initial EL. */
if (!ossl_quic_provide_initial_secret(ch->libctx,
ch->propq,
&ch->init_dcid,
/*is_server=*/1,
ch->qrx, ch->qtx))
return 0;
/* Register our local CID in the DEMUX. */
if (!ossl_qrx_add_dst_conn_id(ch->qrx, &ch->cur_local_cid))
return 0;
/* Change state. */
ch->state = QUIC_CHANNEL_STATE_ACTIVE;
ch->doing_proactive_ver_neg = 0; /* not currently supported */
return 1;
}
SSL *ossl_quic_channel_get0_ssl(QUIC_CHANNEL *ch)
{
return ch->tls;
}
static int ch_init_new_stream(QUIC_CHANNEL *ch, QUIC_STREAM *qs,
int can_send, int can_recv)
{
uint64_t rxfc_wnd;
int server_init = ossl_quic_stream_is_server_init(qs);
int local_init = (ch->is_server == server_init);
int is_uni = !ossl_quic_stream_is_bidi(qs);
if (can_send)
if ((qs->sstream = ossl_quic_sstream_new(INIT_APP_BUF_LEN)) == NULL)
goto err;
if (can_recv)
if ((qs->rstream = ossl_quic_rstream_new(NULL, NULL, 0)) == NULL)
goto err;
/* TXFC */
if (!ossl_quic_txfc_init(&qs->txfc, &ch->conn_txfc))
goto err;
if (ch->got_remote_transport_params) {
/*
* If we already got peer TPs we need to apply the initial CWM credit
* now. If we didn't already get peer TPs this will be done
* automatically for all extant streams when we do.
*/
if (can_send) {
uint64_t cwm;
if (is_uni)
cwm = ch->rx_init_max_stream_data_uni;
else if (local_init)
cwm = ch->rx_init_max_stream_data_bidi_local;
else
cwm = ch->rx_init_max_stream_data_bidi_remote;
ossl_quic_txfc_bump_cwm(&qs->txfc, cwm);
}
}
/* RXFC */
if (!can_recv)
rxfc_wnd = 0;
else if (is_uni)
rxfc_wnd = ch->tx_init_max_stream_data_uni;
else if (local_init)
rxfc_wnd = ch->tx_init_max_stream_data_bidi_local;
else
rxfc_wnd = ch->tx_init_max_stream_data_bidi_remote;
if (!ossl_quic_rxfc_init(&qs->rxfc, &ch->conn_rxfc,
rxfc_wnd,
DEFAULT_STREAM_RXFC_MAX_WND_MUL * rxfc_wnd,
get_time, ch))
goto err;
return 1;
err:
ossl_quic_sstream_free(qs->sstream);
qs->sstream = NULL;
ossl_quic_rstream_free(qs->rstream);
qs->rstream = NULL;
return 0;
}
static uint64_t *ch_get_local_stream_next_ordinal_ptr(QUIC_CHANNEL *ch,
int is_uni)
{
return is_uni ? &ch->next_local_stream_ordinal_uni
: &ch->next_local_stream_ordinal_bidi;
}
int ossl_quic_channel_is_new_local_stream_admissible(QUIC_CHANNEL *ch,
int is_uni)
{
uint64_t *p_next_ordinal = ch_get_local_stream_next_ordinal_ptr(ch, is_uni);
return ossl_quic_stream_map_is_local_allowed_by_stream_limit(&ch->qsm,
*p_next_ordinal,
is_uni);
}
QUIC_STREAM *ossl_quic_channel_new_stream_local(QUIC_CHANNEL *ch, int is_uni)
{
QUIC_STREAM *qs;
int type;
uint64_t stream_id, *p_next_ordinal;
type = ch->is_server ? QUIC_STREAM_INITIATOR_SERVER
: QUIC_STREAM_INITIATOR_CLIENT;
p_next_ordinal = ch_get_local_stream_next_ordinal_ptr(ch, is_uni);
if (is_uni)
type |= QUIC_STREAM_DIR_UNI;
else
type |= QUIC_STREAM_DIR_BIDI;
if (*p_next_ordinal >= ((uint64_t)1) << 62)
return NULL;
stream_id = ((*p_next_ordinal) << 2) | type;
if ((qs = ossl_quic_stream_map_alloc(&ch->qsm, stream_id, type)) == NULL)
return NULL;
/* Locally-initiated stream, so we always want a send buffer. */
if (!ch_init_new_stream(ch, qs, /*can_send=*/1, /*can_recv=*/!is_uni))
goto err;
++*p_next_ordinal;
return qs;
err:
ossl_quic_stream_map_release(&ch->qsm, qs);
return NULL;
}
QUIC_STREAM *ossl_quic_channel_new_stream_remote(QUIC_CHANNEL *ch,
uint64_t stream_id)
{
uint64_t peer_role;
int is_uni;
QUIC_STREAM *qs;
peer_role = ch->is_server
? QUIC_STREAM_INITIATOR_CLIENT
: QUIC_STREAM_INITIATOR_SERVER;
if ((stream_id & QUIC_STREAM_INITIATOR_MASK) != peer_role)
return NULL;
is_uni = ((stream_id & QUIC_STREAM_DIR_MASK) == QUIC_STREAM_DIR_UNI);
qs = ossl_quic_stream_map_alloc(&ch->qsm, stream_id,
stream_id & (QUIC_STREAM_INITIATOR_MASK
| QUIC_STREAM_DIR_MASK));
if (qs == NULL)
return NULL;
if (!ch_init_new_stream(ch, qs, /*can_send=*/!is_uni, /*can_recv=*/1))
goto err;
if (ch->incoming_stream_auto_reject)
ossl_quic_channel_reject_stream(ch, qs);
else
ossl_quic_stream_map_push_accept_queue(&ch->qsm, qs);
return qs;
err:
ossl_quic_stream_map_release(&ch->qsm, qs);
return NULL;
}
void ossl_quic_channel_set_incoming_stream_auto_reject(QUIC_CHANNEL *ch,
int enable,
uint64_t aec)
{
ch->incoming_stream_auto_reject = (enable != 0);
ch->incoming_stream_auto_reject_aec = aec;
}
void ossl_quic_channel_reject_stream(QUIC_CHANNEL *ch, QUIC_STREAM *qs)
{
ossl_quic_stream_map_stop_sending_recv_part(&ch->qsm, qs,
ch->incoming_stream_auto_reject_aec);
ossl_quic_stream_map_reset_stream_send_part(&ch->qsm, qs,
ch->incoming_stream_auto_reject_aec);
qs->deleted = 1;
ossl_quic_stream_map_update_state(&ch->qsm, qs);
}
/* Replace local connection ID in TXP and DEMUX for testing purposes. */
int ossl_quic_channel_replace_local_cid(QUIC_CHANNEL *ch,
const QUIC_CONN_ID *conn_id)
{
/* Remove the current local CID from the DEMUX. */
if (!ossl_qrx_remove_dst_conn_id(ch->qrx, &ch->cur_local_cid))
return 0;
ch->cur_local_cid = *conn_id;
/* Set in the TXP, used only for long header packets. */
if (!ossl_quic_tx_packetiser_set_cur_scid(ch->txp, &ch->cur_local_cid))
return 0;
/* Register our new local CID in the DEMUX. */
if (!ossl_qrx_add_dst_conn_id(ch->qrx, &ch->cur_local_cid))
return 0;
return 1;
}
void ossl_quic_channel_set_msg_callback(QUIC_CHANNEL *ch,
ossl_msg_cb msg_callback,
SSL *msg_callback_ssl)
{
ch->msg_callback = msg_callback;
ch->msg_callback_ssl = msg_callback_ssl;
ossl_qtx_set_msg_callback(ch->qtx, msg_callback, msg_callback_ssl);
ossl_quic_tx_packetiser_set_msg_callback(ch->txp, msg_callback,
msg_callback_ssl);
ossl_qrx_set_msg_callback(ch->qrx, msg_callback, msg_callback_ssl);
}
void ossl_quic_channel_set_msg_callback_arg(QUIC_CHANNEL *ch,
void *msg_callback_arg)
{
ch->msg_callback_arg = msg_callback_arg;
ossl_qtx_set_msg_callback_arg(ch->qtx, msg_callback_arg);
ossl_quic_tx_packetiser_set_msg_callback_arg(ch->txp, msg_callback_arg);
ossl_qrx_set_msg_callback_arg(ch->qrx, msg_callback_arg);
}
void ossl_quic_channel_set_txku_threshold_override(QUIC_CHANNEL *ch,
uint64_t tx_pkt_threshold)
{
ch->txku_threshold_override = tx_pkt_threshold;
}
uint64_t ossl_quic_channel_get_tx_key_epoch(QUIC_CHANNEL *ch)
{
return ossl_qtx_get_key_epoch(ch->qtx);
}
uint64_t ossl_quic_channel_get_rx_key_epoch(QUIC_CHANNEL *ch)
{
return ossl_qrx_get_key_epoch(ch->qrx);
}
int ossl_quic_channel_trigger_txku(QUIC_CHANNEL *ch)
{
if (!txku_allowed(ch))
return 0;
ch->ku_locally_initiated = 1;
ch_trigger_txku(ch);
return 1;
}
int ossl_quic_channel_ping(QUIC_CHANNEL *ch)
{
int pn_space = ossl_quic_enc_level_to_pn_space(ch->tx_enc_level);
ossl_quic_tx_packetiser_schedule_ack_eliciting(ch->txp, pn_space);
return 1;
}
void ossl_quic_channel_set_inhibit_tick(QUIC_CHANNEL *ch, int inhibit)
{
ch->inhibit_tick = (inhibit != 0);
}
uint16_t ossl_quic_channel_get_diag_num_rx_ack(QUIC_CHANNEL *ch)
{
return ch->diag_num_rx_ack;
}
void ossl_quic_channel_get_diag_local_cid(QUIC_CHANNEL *ch, QUIC_CONN_ID *cid)
{
*cid = ch->cur_local_cid;
}