617 lines
18 KiB
C
617 lines
18 KiB
C
/*
|
|
* Copyright 2001-2022 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include "internal/e_os.h"
|
|
|
|
#define __NEW_STARLET 1 /* New starlet definitions since VMS 7.0 */
|
|
#include <unistd.h>
|
|
#include "internal/cryptlib.h"
|
|
#include "internal/nelem.h"
|
|
#include <openssl/rand.h>
|
|
#include "crypto/rand.h"
|
|
#include "crypto/rand_pool.h"
|
|
#include "prov/seeding.h"
|
|
#include <descrip.h>
|
|
#include <dvidef.h>
|
|
#include <jpidef.h>
|
|
#include <rmidef.h>
|
|
#include <syidef.h>
|
|
#include <ssdef.h>
|
|
#include <starlet.h>
|
|
#include <efndef.h>
|
|
#include <gen64def.h>
|
|
#include <iosbdef.h>
|
|
#include <iledef.h>
|
|
#include <lib$routines.h>
|
|
#ifdef __DECC
|
|
# pragma message disable DOLLARID
|
|
#endif
|
|
|
|
#include <dlfcn.h> /* SYS$GET_ENTROPY presence */
|
|
|
|
#ifndef OPENSSL_RAND_SEED_OS
|
|
# error "Unsupported seeding method configured; must be os"
|
|
#endif
|
|
|
|
/*
|
|
* DATA COLLECTION METHOD
|
|
* ======================
|
|
*
|
|
* This is a method to get low quality entropy.
|
|
* It works by collecting all kinds of statistical data that
|
|
* VMS offers and using them as random seed.
|
|
*/
|
|
|
|
/* We need to make sure we have the right size pointer in some cases */
|
|
#if __INITIAL_POINTER_SIZE == 64
|
|
# pragma pointer_size save
|
|
# pragma pointer_size 32
|
|
#endif
|
|
typedef uint32_t *uint32_t__ptr32;
|
|
#if __INITIAL_POINTER_SIZE == 64
|
|
# pragma pointer_size restore
|
|
#endif
|
|
|
|
struct item_st {
|
|
short length, code; /* length is number of bytes */
|
|
};
|
|
|
|
static const struct item_st DVI_item_data[] = {
|
|
{4, DVI$_ERRCNT},
|
|
{4, DVI$_REFCNT},
|
|
};
|
|
|
|
static const struct item_st JPI_item_data[] = {
|
|
{4, JPI$_BUFIO},
|
|
{4, JPI$_CPUTIM},
|
|
{4, JPI$_DIRIO},
|
|
{4, JPI$_IMAGECOUNT},
|
|
{4, JPI$_PAGEFLTS},
|
|
{4, JPI$_PID},
|
|
{4, JPI$_PPGCNT},
|
|
{4, JPI$_WSPEAK},
|
|
/*
|
|
* Note: the direct result is just a 32-bit address. However, it points
|
|
* to a list of 4 32-bit words, so we make extra space for them so we can
|
|
* do in-place replacement of values
|
|
*/
|
|
{16, JPI$_FINALEXC},
|
|
};
|
|
|
|
static const struct item_st JPI_item_data_64bit[] = {
|
|
{8, JPI$_LAST_LOGIN_I},
|
|
{8, JPI$_LOGINTIM},
|
|
};
|
|
|
|
static const struct item_st RMI_item_data[] = {
|
|
{4, RMI$_COLPG},
|
|
{4, RMI$_MWAIT},
|
|
{4, RMI$_CEF},
|
|
{4, RMI$_PFW},
|
|
{4, RMI$_LEF},
|
|
{4, RMI$_LEFO},
|
|
{4, RMI$_HIB},
|
|
{4, RMI$_HIBO},
|
|
{4, RMI$_SUSP},
|
|
{4, RMI$_SUSPO},
|
|
{4, RMI$_FPG},
|
|
{4, RMI$_COM},
|
|
{4, RMI$_COMO},
|
|
{4, RMI$_CUR},
|
|
#if defined __alpha
|
|
{4, RMI$_FRLIST},
|
|
{4, RMI$_MODLIST},
|
|
#endif
|
|
{4, RMI$_FAULTS},
|
|
{4, RMI$_PREADS},
|
|
{4, RMI$_PWRITES},
|
|
{4, RMI$_PWRITIO},
|
|
{4, RMI$_PREADIO},
|
|
{4, RMI$_GVALFLTS},
|
|
{4, RMI$_WRTINPROG},
|
|
{4, RMI$_FREFLTS},
|
|
{4, RMI$_DZROFLTS},
|
|
{4, RMI$_SYSFAULTS},
|
|
{4, RMI$_ISWPCNT},
|
|
{4, RMI$_DIRIO},
|
|
{4, RMI$_BUFIO},
|
|
{4, RMI$_MBREADS},
|
|
{4, RMI$_MBWRITES},
|
|
{4, RMI$_LOGNAM},
|
|
{4, RMI$_FCPCALLS},
|
|
{4, RMI$_FCPREAD},
|
|
{4, RMI$_FCPWRITE},
|
|
{4, RMI$_FCPCACHE},
|
|
{4, RMI$_FCPCPU},
|
|
{4, RMI$_FCPHIT},
|
|
{4, RMI$_FCPSPLIT},
|
|
{4, RMI$_FCPFAULT},
|
|
{4, RMI$_ENQNEW},
|
|
{4, RMI$_ENQCVT},
|
|
{4, RMI$_DEQ},
|
|
{4, RMI$_BLKAST},
|
|
{4, RMI$_ENQWAIT},
|
|
{4, RMI$_ENQNOTQD},
|
|
{4, RMI$_DLCKSRCH},
|
|
{4, RMI$_DLCKFND},
|
|
{4, RMI$_NUMLOCKS},
|
|
{4, RMI$_NUMRES},
|
|
{4, RMI$_ARRLOCPK},
|
|
{4, RMI$_DEPLOCPK},
|
|
{4, RMI$_ARRTRAPK},
|
|
{4, RMI$_TRCNGLOS},
|
|
{4, RMI$_RCVBUFFL},
|
|
{4, RMI$_ENQNEWLOC},
|
|
{4, RMI$_ENQNEWIN},
|
|
{4, RMI$_ENQNEWOUT},
|
|
{4, RMI$_ENQCVTLOC},
|
|
{4, RMI$_ENQCVTIN},
|
|
{4, RMI$_ENQCVTOUT},
|
|
{4, RMI$_DEQLOC},
|
|
{4, RMI$_DEQIN},
|
|
{4, RMI$_DEQOUT},
|
|
{4, RMI$_BLKLOC},
|
|
{4, RMI$_BLKIN},
|
|
{4, RMI$_BLKOUT},
|
|
{4, RMI$_DIRIN},
|
|
{4, RMI$_DIROUT},
|
|
/* We currently get a fault when trying these */
|
|
#if 0
|
|
{140, RMI$_MSCP_EVERYTHING}, /* 35 32-bit words */
|
|
{152, RMI$_DDTM_ALL}, /* 38 32-bit words */
|
|
{80, RMI$_TMSCP_EVERYTHING} /* 20 32-bit words */
|
|
#endif
|
|
{4, RMI$_LPZ_PAGCNT},
|
|
{4, RMI$_LPZ_HITS},
|
|
{4, RMI$_LPZ_MISSES},
|
|
{4, RMI$_LPZ_EXPCNT},
|
|
{4, RMI$_LPZ_ALLOCF},
|
|
{4, RMI$_LPZ_ALLOC2},
|
|
{4, RMI$_ACCESS},
|
|
{4, RMI$_ALLOC},
|
|
{4, RMI$_FCPCREATE},
|
|
{4, RMI$_VOLWAIT},
|
|
{4, RMI$_FCPTURN},
|
|
{4, RMI$_FCPERASE},
|
|
{4, RMI$_OPENS},
|
|
{4, RMI$_FIDHIT},
|
|
{4, RMI$_FIDMISS},
|
|
{4, RMI$_FILHDR_HIT},
|
|
{4, RMI$_DIRFCB_HIT},
|
|
{4, RMI$_DIRFCB_MISS},
|
|
{4, RMI$_DIRDATA_HIT},
|
|
{4, RMI$_EXTHIT},
|
|
{4, RMI$_EXTMISS},
|
|
{4, RMI$_QUOHIT},
|
|
{4, RMI$_QUOMISS},
|
|
{4, RMI$_STORAGMAP_HIT},
|
|
{4, RMI$_VOLLCK},
|
|
{4, RMI$_SYNCHLCK},
|
|
{4, RMI$_SYNCHWAIT},
|
|
{4, RMI$_ACCLCK},
|
|
{4, RMI$_XQPCACHEWAIT},
|
|
{4, RMI$_DIRDATA_MISS},
|
|
{4, RMI$_FILHDR_MISS},
|
|
{4, RMI$_STORAGMAP_MISS},
|
|
{4, RMI$_PROCCNTMAX},
|
|
{4, RMI$_PROCBATCNT},
|
|
{4, RMI$_PROCINTCNT},
|
|
{4, RMI$_PROCNETCNT},
|
|
{4, RMI$_PROCSWITCHCNT},
|
|
{4, RMI$_PROCBALSETCNT},
|
|
{4, RMI$_PROCLOADCNT},
|
|
{4, RMI$_BADFLTS},
|
|
{4, RMI$_EXEFAULTS},
|
|
{4, RMI$_HDRINSWAPS},
|
|
{4, RMI$_HDROUTSWAPS},
|
|
{4, RMI$_IOPAGCNT},
|
|
{4, RMI$_ISWPCNTPG},
|
|
{4, RMI$_OSWPCNT},
|
|
{4, RMI$_OSWPCNTPG},
|
|
{4, RMI$_RDFAULTS},
|
|
{4, RMI$_TRANSFLTS},
|
|
{4, RMI$_WRTFAULTS},
|
|
#if defined __alpha
|
|
{4, RMI$_USERPAGES},
|
|
#endif
|
|
{4, RMI$_VMSPAGES},
|
|
{4, RMI$_TTWRITES},
|
|
{4, RMI$_BUFOBJPAG},
|
|
{4, RMI$_BUFOBJPAGPEAK},
|
|
{4, RMI$_BUFOBJPAGS01},
|
|
{4, RMI$_BUFOBJPAGS2},
|
|
{4, RMI$_BUFOBJPAGMAXS01},
|
|
{4, RMI$_BUFOBJPAGMAXS2},
|
|
{4, RMI$_BUFOBJPAGPEAKS01},
|
|
{4, RMI$_BUFOBJPAGPEAKS2},
|
|
{4, RMI$_BUFOBJPGLTMAXS01},
|
|
{4, RMI$_BUFOBJPGLTMAXS2},
|
|
{4, RMI$_DLCK_INCMPLT},
|
|
{4, RMI$_DLCKMSGS_IN},
|
|
{4, RMI$_DLCKMSGS_OUT},
|
|
{4, RMI$_MCHKERRS},
|
|
{4, RMI$_MEMERRS},
|
|
};
|
|
|
|
static const struct item_st RMI_item_data_64bit[] = {
|
|
#if defined __ia64
|
|
{8, RMI$_FRLIST},
|
|
{8, RMI$_MODLIST},
|
|
#endif
|
|
{8, RMI$_LCKMGR_REQCNT},
|
|
{8, RMI$_LCKMGR_REQTIME},
|
|
{8, RMI$_LCKMGR_SPINCNT},
|
|
{8, RMI$_LCKMGR_SPINTIME},
|
|
{8, RMI$_CPUINTSTK},
|
|
{8, RMI$_CPUMPSYNCH},
|
|
{8, RMI$_CPUKERNEL},
|
|
{8, RMI$_CPUEXEC},
|
|
{8, RMI$_CPUSUPER},
|
|
{8, RMI$_CPUUSER},
|
|
#if defined __ia64
|
|
{8, RMI$_USERPAGES},
|
|
#endif
|
|
{8, RMI$_TQETOTAL},
|
|
{8, RMI$_TQESYSUB},
|
|
{8, RMI$_TQEUSRTIMR},
|
|
{8, RMI$_TQEUSRWAKE},
|
|
};
|
|
|
|
static const struct item_st SYI_item_data[] = {
|
|
{4, SYI$_PAGEFILE_FREE},
|
|
};
|
|
|
|
/*
|
|
* Input:
|
|
* items_data - an array of lengths and codes
|
|
* items_data_num - number of elements in that array
|
|
*
|
|
* Output:
|
|
* items - pre-allocated ILE3 array to be filled.
|
|
* It's assumed to have items_data_num elements plus
|
|
* one extra for the terminating NULL element
|
|
* databuffer - pre-allocated 32-bit word array.
|
|
*
|
|
* Returns the number of elements used in databuffer
|
|
*/
|
|
static size_t prepare_item_list(const struct item_st *items_input,
|
|
size_t items_input_num,
|
|
ILE3 *items,
|
|
uint32_t__ptr32 databuffer)
|
|
{
|
|
size_t data_sz = 0;
|
|
|
|
for (; items_input_num-- > 0; items_input++, items++) {
|
|
|
|
items->ile3$w_code = items_input->code;
|
|
/* Special treatment of JPI$_FINALEXC */
|
|
if (items->ile3$w_code == JPI$_FINALEXC)
|
|
items->ile3$w_length = 4;
|
|
else
|
|
items->ile3$w_length = items_input->length;
|
|
|
|
items->ile3$ps_bufaddr = databuffer;
|
|
items->ile3$ps_retlen_addr = 0;
|
|
|
|
databuffer += items_input->length / sizeof(databuffer[0]);
|
|
data_sz += items_input->length;
|
|
}
|
|
/* Terminating NULL entry */
|
|
items->ile3$w_length = items->ile3$w_code = 0;
|
|
items->ile3$ps_bufaddr = items->ile3$ps_retlen_addr = NULL;
|
|
|
|
return data_sz / sizeof(databuffer[0]);
|
|
}
|
|
|
|
static void massage_JPI(ILE3 *items)
|
|
{
|
|
/*
|
|
* Special treatment of JPI$_FINALEXC
|
|
* The result of that item's data buffer is a 32-bit address to a list of
|
|
* 4 32-bit words.
|
|
*/
|
|
for (; items->ile3$w_length != 0; items++) {
|
|
if (items->ile3$w_code == JPI$_FINALEXC) {
|
|
uint32_t *data = items->ile3$ps_bufaddr;
|
|
uint32_t *ptr = (uint32_t *)*data;
|
|
size_t j;
|
|
|
|
/*
|
|
* We know we made space for 4 32-bit words, so we can do in-place
|
|
* replacement.
|
|
*/
|
|
for (j = 0; j < 4; j++)
|
|
data[j] = ptr[j];
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This number expresses how many bits of data contain 1 bit of entropy.
|
|
*
|
|
* For the moment, we assume about 0.05 entropy bits per data bit, or 1
|
|
* bit of entropy per 20 data bits.
|
|
*/
|
|
#define ENTROPY_FACTOR 20
|
|
|
|
size_t data_collect_method(RAND_POOL *pool)
|
|
{
|
|
ILE3 JPI_items_64bit[OSSL_NELEM(JPI_item_data_64bit) + 1];
|
|
ILE3 RMI_items_64bit[OSSL_NELEM(RMI_item_data_64bit) + 1];
|
|
ILE3 DVI_items[OSSL_NELEM(DVI_item_data) + 1];
|
|
ILE3 JPI_items[OSSL_NELEM(JPI_item_data) + 1];
|
|
ILE3 RMI_items[OSSL_NELEM(RMI_item_data) + 1];
|
|
ILE3 SYI_items[OSSL_NELEM(SYI_item_data) + 1];
|
|
union {
|
|
/* This ensures buffer starts at 64 bit boundary */
|
|
uint64_t dummy;
|
|
uint32_t buffer[OSSL_NELEM(JPI_item_data_64bit) * 2
|
|
+ OSSL_NELEM(RMI_item_data_64bit) * 2
|
|
+ OSSL_NELEM(DVI_item_data)
|
|
+ OSSL_NELEM(JPI_item_data)
|
|
+ OSSL_NELEM(RMI_item_data)
|
|
+ OSSL_NELEM(SYI_item_data)
|
|
+ 4 /* For JPI$_FINALEXC */];
|
|
} data;
|
|
size_t total_elems = 0;
|
|
size_t total_length = 0;
|
|
size_t bytes_needed = ossl_rand_pool_bytes_needed(pool, ENTROPY_FACTOR);
|
|
size_t bytes_remaining = ossl_rand_pool_bytes_remaining(pool);
|
|
|
|
/* Take all the 64-bit items first, to ensure proper alignment of data */
|
|
total_elems +=
|
|
prepare_item_list(JPI_item_data_64bit, OSSL_NELEM(JPI_item_data_64bit),
|
|
JPI_items_64bit, &data.buffer[total_elems]);
|
|
total_elems +=
|
|
prepare_item_list(RMI_item_data_64bit, OSSL_NELEM(RMI_item_data_64bit),
|
|
RMI_items_64bit, &data.buffer[total_elems]);
|
|
/* Now the 32-bit items */
|
|
total_elems += prepare_item_list(DVI_item_data, OSSL_NELEM(DVI_item_data),
|
|
DVI_items, &data.buffer[total_elems]);
|
|
total_elems += prepare_item_list(JPI_item_data, OSSL_NELEM(JPI_item_data),
|
|
JPI_items, &data.buffer[total_elems]);
|
|
total_elems += prepare_item_list(RMI_item_data, OSSL_NELEM(RMI_item_data),
|
|
RMI_items, &data.buffer[total_elems]);
|
|
total_elems += prepare_item_list(SYI_item_data, OSSL_NELEM(SYI_item_data),
|
|
SYI_items, &data.buffer[total_elems]);
|
|
total_length = total_elems * sizeof(data.buffer[0]);
|
|
|
|
/* Fill data.buffer with various info bits from this process */
|
|
{
|
|
uint32_t status;
|
|
uint32_t efn;
|
|
IOSB iosb;
|
|
$DESCRIPTOR(SYSDEVICE, "SYS$SYSDEVICE:");
|
|
|
|
if ((status = sys$getdviw(EFN$C_ENF, 0, &SYSDEVICE, DVI_items,
|
|
0, 0, 0, 0, 0)) != SS$_NORMAL) {
|
|
lib$signal(status);
|
|
return 0;
|
|
}
|
|
if ((status = sys$getjpiw(EFN$C_ENF, 0, 0, JPI_items_64bit, 0, 0, 0))
|
|
!= SS$_NORMAL) {
|
|
lib$signal(status);
|
|
return 0;
|
|
}
|
|
if ((status = sys$getjpiw(EFN$C_ENF, 0, 0, JPI_items, 0, 0, 0))
|
|
!= SS$_NORMAL) {
|
|
lib$signal(status);
|
|
return 0;
|
|
}
|
|
if ((status = sys$getsyiw(EFN$C_ENF, 0, 0, SYI_items, 0, 0, 0))
|
|
!= SS$_NORMAL) {
|
|
lib$signal(status);
|
|
return 0;
|
|
}
|
|
/*
|
|
* The RMI service is a bit special, as there is no synchronous
|
|
* variant, so we MUST create an event flag to synchronise on.
|
|
*/
|
|
if ((status = lib$get_ef(&efn)) != SS$_NORMAL) {
|
|
lib$signal(status);
|
|
return 0;
|
|
}
|
|
if ((status = sys$getrmi(efn, 0, 0, RMI_items_64bit, &iosb, 0, 0))
|
|
!= SS$_NORMAL) {
|
|
lib$signal(status);
|
|
return 0;
|
|
}
|
|
if ((status = sys$synch(efn, &iosb)) != SS$_NORMAL) {
|
|
lib$signal(status);
|
|
return 0;
|
|
}
|
|
if (iosb.iosb$l_getxxi_status != SS$_NORMAL) {
|
|
lib$signal(iosb.iosb$l_getxxi_status);
|
|
return 0;
|
|
}
|
|
if ((status = sys$getrmi(efn, 0, 0, RMI_items, &iosb, 0, 0))
|
|
!= SS$_NORMAL) {
|
|
lib$signal(status);
|
|
return 0;
|
|
}
|
|
if ((status = sys$synch(efn, &iosb)) != SS$_NORMAL) {
|
|
lib$signal(status);
|
|
return 0;
|
|
}
|
|
if (iosb.iosb$l_getxxi_status != SS$_NORMAL) {
|
|
lib$signal(iosb.iosb$l_getxxi_status);
|
|
return 0;
|
|
}
|
|
if ((status = lib$free_ef(&efn)) != SS$_NORMAL) {
|
|
lib$signal(status);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
massage_JPI(JPI_items);
|
|
|
|
/*
|
|
* If we can't feed the requirements from the caller, we're in deep trouble.
|
|
*/
|
|
if (!ossl_assert(total_length >= bytes_needed)) {
|
|
ERR_raise_data(ERR_LIB_RAND, RAND_R_RANDOM_POOL_UNDERFLOW,
|
|
"Needed: %zu, Available: %zu",
|
|
bytes_needed, total_length);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Try not to overfeed the pool
|
|
*/
|
|
if (total_length > bytes_remaining)
|
|
total_length = bytes_remaining;
|
|
|
|
/* We give the pessimistic value for the amount of entropy */
|
|
ossl_rand_pool_add(pool, (unsigned char *)data.buffer, total_length,
|
|
8 * total_length / ENTROPY_FACTOR);
|
|
return ossl_rand_pool_entropy_available(pool);
|
|
}
|
|
|
|
/*
|
|
* SYS$GET_ENTROPY METHOD
|
|
* ======================
|
|
*
|
|
* This is a high entropy method based on a new system service that is
|
|
* based on getentropy() from FreeBSD 12. It's only used if available,
|
|
* and its availability is detected at run-time.
|
|
*
|
|
* We assume that this function provides full entropy random output.
|
|
*/
|
|
#define PUBLIC_VECTORS "SYS$LIBRARY:SYS$PUBLIC_VECTORS.EXE"
|
|
#define GET_ENTROPY "SYS$GET_ENTROPY"
|
|
|
|
static int get_entropy_address_flag = 0;
|
|
static int (*get_entropy_address)(void *buffer, size_t buffer_size) = NULL;
|
|
static int init_get_entropy_address(void)
|
|
{
|
|
if (get_entropy_address_flag == 0)
|
|
get_entropy_address = dlsym(dlopen(PUBLIC_VECTORS, 0), GET_ENTROPY);
|
|
get_entropy_address_flag = 1;
|
|
return get_entropy_address != NULL;
|
|
}
|
|
|
|
size_t get_entropy_method(RAND_POOL *pool)
|
|
{
|
|
/*
|
|
* The documentation says that SYS$GET_ENTROPY will give a maximum of
|
|
* 256 bytes of data.
|
|
*/
|
|
unsigned char buffer[256];
|
|
size_t bytes_needed;
|
|
size_t bytes_to_get = 0;
|
|
uint32_t status;
|
|
|
|
for (bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
|
|
bytes_needed > 0;
|
|
bytes_needed -= bytes_to_get) {
|
|
bytes_to_get =
|
|
bytes_needed > sizeof(buffer) ? sizeof(buffer) : bytes_needed;
|
|
|
|
status = get_entropy_address(buffer, bytes_to_get);
|
|
if (status == SS$_RETRY) {
|
|
/* Set to zero so the loop doesn't diminish |bytes_needed| */
|
|
bytes_to_get = 0;
|
|
/* Should sleep some amount of time */
|
|
continue;
|
|
}
|
|
|
|
if (status != SS$_NORMAL) {
|
|
lib$signal(status);
|
|
return 0;
|
|
}
|
|
|
|
ossl_rand_pool_add(pool, buffer, bytes_to_get, 8 * bytes_to_get);
|
|
}
|
|
|
|
return ossl_rand_pool_entropy_available(pool);
|
|
}
|
|
|
|
/*
|
|
* MAIN ENTROPY ACQUISITION FUNCTIONS
|
|
* ==================================
|
|
*
|
|
* These functions are called by the RAND / DRBG functions
|
|
*/
|
|
|
|
size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
|
|
{
|
|
if (init_get_entropy_address())
|
|
return get_entropy_method(pool);
|
|
return data_collect_method(pool);
|
|
}
|
|
|
|
int ossl_pool_add_nonce_data(RAND_POOL *pool)
|
|
{
|
|
/*
|
|
* Two variables to ensure that two nonces won't ever be the same
|
|
*/
|
|
static unsigned __int64 last_time = 0;
|
|
static unsigned __int32 last_seq = 0;
|
|
|
|
struct {
|
|
pid_t pid;
|
|
CRYPTO_THREAD_ID tid;
|
|
unsigned __int64 time;
|
|
unsigned __int32 seq;
|
|
} data;
|
|
|
|
/* Erase the entire structure including any padding */
|
|
memset(&data, 0, sizeof(data));
|
|
|
|
/*
|
|
* Add process id, thread id, a timestamp, and a sequence number in case
|
|
* the same time stamp is repeated, to ensure that the nonce is unique
|
|
* with high probability for different process instances.
|
|
*
|
|
* The normal OpenVMS time is specified to be high granularity (100ns),
|
|
* but the time update granularity given by sys$gettim() may be lower.
|
|
*
|
|
* OpenVMS version 8.4 (which is the latest for Alpha and Itanium) and
|
|
* on have sys$gettim_prec() as well, which is supposedly having a better
|
|
* time update granularity, but tests on Itanium (and even Alpha) have
|
|
* shown that compared with sys$gettim(), the difference is marginal,
|
|
* so of very little significance in terms of entropy.
|
|
* Given that, and that it's a high ask to expect everyone to have
|
|
* upgraded to OpenVMS version 8.4, only sys$gettim() is used, and a
|
|
* sequence number is added as well, in case sys$gettim() returns the
|
|
* same time value more than once.
|
|
*
|
|
* This function is assumed to be called under thread lock, and does
|
|
* therefore not take concurrency into account.
|
|
*/
|
|
data.pid = getpid();
|
|
data.tid = CRYPTO_THREAD_get_current_id();
|
|
data.seq = 0;
|
|
sys$gettim((void*)&data.time);
|
|
|
|
if (data.time == last_time) {
|
|
data.seq = ++last_seq;
|
|
} else {
|
|
last_time = data.time;
|
|
last_seq = 0;
|
|
}
|
|
|
|
return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
|
|
}
|
|
|
|
int ossl_rand_pool_init(void)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
void ossl_rand_pool_cleanup(void)
|
|
{
|
|
}
|
|
|
|
void ossl_rand_pool_keep_random_devices_open(int keep)
|
|
{
|
|
}
|