dockerfile/examples/openssl/openssl-3.2.1-src/providers/implementations/kem/ec_kem.c

815 lines
26 KiB
C

/*
* Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* The following implementation is part of RFC 9180 related to DHKEM using
* EC keys (i.e. P-256, P-384 and P-521)
* References to Sections in the comments below refer to RFC 9180.
*/
#include "internal/deprecated.h"
#include <openssl/crypto.h>
#include <openssl/evp.h>
#include <openssl/core_dispatch.h>
#include <openssl/core_names.h>
#include <openssl/ec.h>
#include <openssl/params.h>
#include <openssl/err.h>
#include <openssl/proverr.h>
#include <openssl/kdf.h>
#include <openssl/rand.h>
#include "prov/provider_ctx.h"
#include "prov/implementations.h"
#include "prov/securitycheck.h"
#include "prov/providercommon.h"
#include <openssl/hpke.h>
#include "internal/hpke_util.h"
#include "crypto/ec.h"
#include "prov/ecx.h"
#include "eckem.h"
typedef struct {
EC_KEY *recipient_key;
EC_KEY *sender_authkey;
OSSL_LIB_CTX *libctx;
char *propq;
unsigned int mode;
unsigned int op;
unsigned char *ikm;
size_t ikmlen;
const char *kdfname;
const OSSL_HPKE_KEM_INFO *info;
} PROV_EC_CTX;
static OSSL_FUNC_kem_newctx_fn eckem_newctx;
static OSSL_FUNC_kem_encapsulate_init_fn eckem_encapsulate_init;
static OSSL_FUNC_kem_auth_encapsulate_init_fn eckem_auth_encapsulate_init;
static OSSL_FUNC_kem_encapsulate_fn eckem_encapsulate;
static OSSL_FUNC_kem_decapsulate_init_fn eckem_decapsulate_init;
static OSSL_FUNC_kem_auth_decapsulate_init_fn eckem_auth_decapsulate_init;
static OSSL_FUNC_kem_decapsulate_fn eckem_decapsulate;
static OSSL_FUNC_kem_freectx_fn eckem_freectx;
static OSSL_FUNC_kem_set_ctx_params_fn eckem_set_ctx_params;
static OSSL_FUNC_kem_settable_ctx_params_fn eckem_settable_ctx_params;
/* ASCII: "KEM", in hex for EBCDIC compatibility */
static const char LABEL_KEM[] = "\x4b\x45\x4d";
static int eckey_check(const EC_KEY *ec, int requires_privatekey)
{
int rv = 0;
BN_CTX *bnctx = NULL;
BIGNUM *rem = NULL;
const BIGNUM *priv = EC_KEY_get0_private_key(ec);
const EC_POINT *pub = EC_KEY_get0_public_key(ec);
/* Keys always require a public component */
if (pub == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PUBLIC_KEY);
return 0;
}
if (priv == NULL) {
return (requires_privatekey == 0);
} else {
/* If there is a private key, check that is non zero (mod order) */
const EC_GROUP *group = EC_KEY_get0_group(ec);
const BIGNUM *order = EC_GROUP_get0_order(group);
bnctx = BN_CTX_new_ex(ossl_ec_key_get_libctx(ec));
rem = BN_new();
if (order != NULL && rem != NULL && bnctx != NULL) {
rv = BN_mod(rem, priv, order, bnctx)
&& !BN_is_zero(rem);
}
}
BN_free(rem);
BN_CTX_free(bnctx);
return rv;
}
/* Returns NULL if the curve is not supported */
static const char *ec_curvename_get0(const EC_KEY *ec)
{
const EC_GROUP *group = EC_KEY_get0_group(ec);
return EC_curve_nid2nist(EC_GROUP_get_curve_name(group));
}
/*
* Set the recipient key, and free any existing key.
* ec can be NULL.
* The ec key may have only a private or public component
* (but it must have a group).
*/
static int recipient_key_set(PROV_EC_CTX *ctx, EC_KEY *ec)
{
EC_KEY_free(ctx->recipient_key);
ctx->recipient_key = NULL;
if (ec != NULL) {
const char *curve = ec_curvename_get0(ec);
if (curve == NULL)
return -2;
ctx->info = ossl_HPKE_KEM_INFO_find_curve(curve);
if (ctx->info == NULL)
return -2;
if (!EC_KEY_up_ref(ec))
return 0;
ctx->recipient_key = ec;
ctx->kdfname = "HKDF";
}
return 1;
}
/*
* Set the senders auth key, and free any existing auth key.
* ec can be NULL.
*/
static int sender_authkey_set(PROV_EC_CTX *ctx, EC_KEY *ec)
{
EC_KEY_free(ctx->sender_authkey);
ctx->sender_authkey = NULL;
if (ec != NULL) {
if (!EC_KEY_up_ref(ec))
return 0;
ctx->sender_authkey = ec;
}
return 1;
}
/*
* Serializes a encoded public key buffer into a EC public key.
* Params:
* in Contains the group.
* pubbuf The encoded public key buffer
* Returns: The created public EC key, or NULL if there is an error.
*/
static EC_KEY *eckey_frompub(EC_KEY *in,
const unsigned char *pubbuf, size_t pubbuflen)
{
EC_KEY *key;
key = EC_KEY_new_ex(ossl_ec_key_get_libctx(in), ossl_ec_key_get0_propq(in));
if (key == NULL)
goto err;
if (!EC_KEY_set_group(key, EC_KEY_get0_group(in)))
goto err;
if (!EC_KEY_oct2key(key, pubbuf, pubbuflen, NULL))
goto err;
return key;
err:
EC_KEY_free(key);
return NULL;
}
/*
* Deserialises a EC public key into a encoded byte array.
* Returns: 1 if successful or 0 otherwise.
*/
static int ecpubkey_todata(const EC_KEY *ec, unsigned char *out, size_t *outlen,
size_t maxoutlen)
{
const EC_POINT *pub;
const EC_GROUP *group;
group = EC_KEY_get0_group(ec);
pub = EC_KEY_get0_public_key(ec);
*outlen = EC_POINT_point2oct(group, pub, POINT_CONVERSION_UNCOMPRESSED,
out, maxoutlen, NULL);
return *outlen != 0;
}
static void *eckem_newctx(void *provctx)
{
PROV_EC_CTX *ctx = OPENSSL_zalloc(sizeof(PROV_EC_CTX));
if (ctx == NULL)
return NULL;
ctx->libctx = PROV_LIBCTX_OF(provctx);
return ctx;
}
static void eckem_freectx(void *vectx)
{
PROV_EC_CTX *ctx = (PROV_EC_CTX *)vectx;
OPENSSL_clear_free(ctx->ikm, ctx->ikmlen);
recipient_key_set(ctx, NULL);
sender_authkey_set(ctx, NULL);
OPENSSL_free(ctx);
}
static int ossl_ec_match_params(const EC_KEY *key1, const EC_KEY *key2)
{
int ret;
BN_CTX *ctx = NULL;
const EC_GROUP *group1 = EC_KEY_get0_group(key1);
const EC_GROUP *group2 = EC_KEY_get0_group(key2);
ctx = BN_CTX_new_ex(ossl_ec_key_get_libctx(key1));
if (ctx == NULL)
return 0;
ret = group1 != NULL
&& group2 != NULL
&& EC_GROUP_cmp(group1, group2, ctx) == 0;
if (!ret)
ERR_raise(ERR_LIB_PROV, PROV_R_MISMATCHING_DOMAIN_PARAMETERS);
BN_CTX_free(ctx);
return ret;
}
static int eckem_init(void *vctx, int operation, void *vec, void *vauth,
const OSSL_PARAM params[])
{
int rv;
PROV_EC_CTX *ctx = (PROV_EC_CTX *)vctx;
EC_KEY *ec = vec;
EC_KEY *auth = vauth;
if (!ossl_prov_is_running())
return 0;
if (!eckey_check(ec, operation == EVP_PKEY_OP_DECAPSULATE))
return 0;
rv = recipient_key_set(ctx, ec);
if (rv <= 0)
return rv;
if (auth != NULL) {
if (!ossl_ec_match_params(ec, auth)
|| !eckey_check(auth, operation == EVP_PKEY_OP_ENCAPSULATE)
|| !sender_authkey_set(ctx, auth))
return 0;
}
ctx->op = operation;
return eckem_set_ctx_params(vctx, params);
}
static int eckem_encapsulate_init(void *vctx, void *vec,
const OSSL_PARAM params[])
{
return eckem_init(vctx, EVP_PKEY_OP_ENCAPSULATE, vec, NULL, params);
}
static int eckem_decapsulate_init(void *vctx, void *vec,
const OSSL_PARAM params[])
{
return eckem_init(vctx, EVP_PKEY_OP_DECAPSULATE, vec, NULL, params);
}
static int eckem_auth_encapsulate_init(void *vctx, void *vecx, void *vauthpriv,
const OSSL_PARAM params[])
{
return eckem_init(vctx, EVP_PKEY_OP_ENCAPSULATE, vecx, vauthpriv, params);
}
static int eckem_auth_decapsulate_init(void *vctx, void *vecx, void *vauthpub,
const OSSL_PARAM params[])
{
return eckem_init(vctx, EVP_PKEY_OP_DECAPSULATE, vecx, vauthpub, params);
}
static int eckem_set_ctx_params(void *vctx, const OSSL_PARAM params[])
{
PROV_EC_CTX *ctx = (PROV_EC_CTX *)vctx;
const OSSL_PARAM *p;
int mode;
if (params == NULL)
return 1;
p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_IKME);
if (p != NULL) {
void *tmp = NULL;
size_t tmplen = 0;
if (p->data != NULL && p->data_size != 0) {
if (!OSSL_PARAM_get_octet_string(p, &tmp, 0, &tmplen))
return 0;
}
OPENSSL_clear_free(ctx->ikm, ctx->ikmlen);
/* Set the ephemeral seed */
ctx->ikm = tmp;
ctx->ikmlen = tmplen;
}
p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_OPERATION);
if (p != NULL) {
if (p->data_type != OSSL_PARAM_UTF8_STRING)
return 0;
mode = ossl_eckem_modename2id(p->data);
if (mode == KEM_MODE_UNDEFINED)
return 0;
ctx->mode = mode;
}
return 1;
}
static const OSSL_PARAM known_settable_eckem_ctx_params[] = {
OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0),
OSSL_PARAM_octet_string(OSSL_KEM_PARAM_IKME, NULL, 0),
OSSL_PARAM_END
};
static const OSSL_PARAM *eckem_settable_ctx_params(ossl_unused void *vctx,
ossl_unused void *provctx)
{
return known_settable_eckem_ctx_params;
}
/*
* See Section 4.1 DH-Based KEM (DHKEM) ExtractAndExpand
*/
static int dhkem_extract_and_expand(EVP_KDF_CTX *kctx,
unsigned char *okm, size_t okmlen,
uint16_t kemid,
const unsigned char *dhkm, size_t dhkmlen,
const unsigned char *kemctx,
size_t kemctxlen)
{
uint8_t suiteid[2];
uint8_t prk[EVP_MAX_MD_SIZE];
size_t prklen = okmlen;
int ret;
if (prklen > sizeof(prk))
return 0;
suiteid[0] = (kemid >> 8) & 0xff;
suiteid[1] = kemid & 0xff;
ret = ossl_hpke_labeled_extract(kctx, prk, prklen,
NULL, 0, LABEL_KEM, suiteid, sizeof(suiteid),
OSSL_DHKEM_LABEL_EAE_PRK, dhkm, dhkmlen)
&& ossl_hpke_labeled_expand(kctx, okm, okmlen, prk, prklen,
LABEL_KEM, suiteid, sizeof(suiteid),
OSSL_DHKEM_LABEL_SHARED_SECRET,
kemctx, kemctxlen);
OPENSSL_cleanse(prk, prklen);
return ret;
}
/*
* See Section 7.1.3 DeriveKeyPair.
*
* This function is used by ec keygen.
* (For this reason it does not use any of the state stored in PROV_EC_CTX).
*
* Params:
* ec An initialized ec key.
* priv The buffer to store the generated private key into (it is assumed
* this is of length alg->encodedprivlen).
* ikm buffer containing the input key material (seed). This must be set.
* ikmlen size of the ikm buffer in bytes
* Returns:
* 1 if successful or 0 otherwise.
*/
int ossl_ec_dhkem_derive_private(EC_KEY *ec, BIGNUM *priv,
const unsigned char *ikm, size_t ikmlen)
{
int ret = 0;
EVP_KDF_CTX *kdfctx = NULL;
uint8_t suiteid[2];
unsigned char prk[OSSL_HPKE_MAX_SECRET];
unsigned char privbuf[OSSL_HPKE_MAX_PRIVATE];
const BIGNUM *order;
unsigned char counter = 0;
const char *curve = ec_curvename_get0(ec);
const OSSL_HPKE_KEM_INFO *info;
if (curve == NULL)
return -2;
info = ossl_HPKE_KEM_INFO_find_curve(curve);
if (info == NULL)
return -2;
kdfctx = ossl_kdf_ctx_create("HKDF", info->mdname,
ossl_ec_key_get_libctx(ec),
ossl_ec_key_get0_propq(ec));
if (kdfctx == NULL)
return 0;
/* ikmlen should have a length of at least Nsk */
if (ikmlen < info->Nsecret) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_INPUT_LENGTH,
"ikm length is :%zu, should be at least %zu",
ikmlen, info->Nsecret);
goto err;
}
suiteid[0] = info->kem_id / 256;
suiteid[1] = info->kem_id % 256;
if (!ossl_hpke_labeled_extract(kdfctx, prk, info->Nsecret,
NULL, 0, LABEL_KEM, suiteid, sizeof(suiteid),
OSSL_DHKEM_LABEL_DKP_PRK, ikm, ikmlen))
goto err;
order = EC_GROUP_get0_order(EC_KEY_get0_group(ec));
do {
if (!ossl_hpke_labeled_expand(kdfctx, privbuf, info->Nsk,
prk, info->Nsecret,
LABEL_KEM, suiteid, sizeof(suiteid),
OSSL_DHKEM_LABEL_CANDIDATE,
&counter, 1))
goto err;
privbuf[0] &= info->bitmask;
if (BN_bin2bn(privbuf, info->Nsk, priv) == NULL)
goto err;
if (counter == 0xFF) {
ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_GENERATE_KEY);
goto err;
}
counter++;
} while (BN_is_zero(priv) || BN_cmp(priv, order) >= 0);
ret = 1;
err:
OPENSSL_cleanse(prk, sizeof(prk));
OPENSSL_cleanse(privbuf, sizeof(privbuf));
EVP_KDF_CTX_free(kdfctx);
return ret;
}
/*
* Do a keygen operation without having to use EVP_PKEY.
* Params:
* ctx Context object
* ikm The seed material - if this is NULL, then a random seed is used.
* Returns:
* The generated EC key, or NULL on failure.
*/
static EC_KEY *derivekey(PROV_EC_CTX *ctx,
const unsigned char *ikm, size_t ikmlen)
{
int ret = 0;
EC_KEY *key;
unsigned char *seed = (unsigned char *)ikm;
size_t seedlen = ikmlen;
unsigned char tmpbuf[OSSL_HPKE_MAX_PRIVATE];
key = EC_KEY_new_ex(ctx->libctx, ctx->propq);
if (key == NULL)
goto err;
if (!EC_KEY_set_group(key, EC_KEY_get0_group(ctx->recipient_key)))
goto err;
/* Generate a random seed if there is no input ikm */
if (seed == NULL || seedlen == 0) {
seedlen = ctx->info->Nsk;
if (seedlen > sizeof(tmpbuf))
goto err;
if (RAND_priv_bytes_ex(ctx->libctx, tmpbuf, seedlen, 0) <= 0)
goto err;
seed = tmpbuf;
}
ret = ossl_ec_generate_key_dhkem(key, seed, seedlen);
err:
if (seed != ikm)
OPENSSL_cleanse(seed, seedlen);
if (ret <= 0) {
EC_KEY_free(key);
key = NULL;
}
return key;
}
/*
* Before doing a key exchange the public key of the peer needs to be checked
* Note that the group check is not done here as we have already checked
* that it only uses one of the approved curve names when the key was set.
*
* Returns 1 if the public key is valid, or 0 if it fails.
*/
static int check_publickey(const EC_KEY *pub)
{
int ret = 0;
BN_CTX *bnctx = BN_CTX_new_ex(ossl_ec_key_get_libctx(pub));
if (bnctx == NULL)
return 0;
ret = ossl_ec_key_public_check(pub, bnctx);
BN_CTX_free(bnctx);
return ret;
}
/*
* Do an ecdh key exchange.
* dhkm = DH(sender, peer)
*
* NOTE: Instead of using EVP_PKEY_derive() API's, we use EC_KEY operations
* to avoid messy conversions back to EVP_PKEY.
*
* Returns the size of the secret if successful, or 0 otherwise,
*/
static int generate_ecdhkm(const EC_KEY *sender, const EC_KEY *peer,
unsigned char *out, size_t maxout,
unsigned int secretsz)
{
const EC_GROUP *group = EC_KEY_get0_group(sender);
size_t secretlen = (EC_GROUP_get_degree(group) + 7) / 8;
if (secretlen != secretsz || secretlen > maxout) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "secretsz invalid");
return 0;
}
if (!check_publickey(peer))
return 0;
return ECDH_compute_key(out, secretlen, EC_KEY_get0_public_key(peer),
sender, NULL) > 0;
}
/*
* Derive a secret using ECDH (code is shared by the encap and decap)
*
* dhkm = Concat(ecdh(privkey1, peerkey1), ecdh(privkey2, peerkey2)
* kemctx = Concat(sender_pub, recipient_pub, ctx->sender_authkey)
* secret = dhkem_extract_and_expand(kemid, dhkm, kemctx);
*
* Params:
* ctx Object that contains algorithm state and constants.
* secret The returned secret (with a length ctx->alg->secretlen bytes).
* privkey1 A private key used for ECDH key derivation.
* peerkey1 A public key used for ECDH key derivation with privkey1
* privkey2 A optional private key used for a second ECDH key derivation.
* It can be NULL.
* peerkey2 A optional public key used for a second ECDH key derivation
* with privkey2,. It can be NULL.
* sender_pub The senders public key in encoded form.
* recipient_pub The recipients public key in encoded form.
* Notes:
* The second ecdh() is only used for the HPKE auth modes when both privkey2
* and peerkey2 are non NULL (i.e. ctx->sender_authkey is not NULL).
*/
static int derive_secret(PROV_EC_CTX *ctx, unsigned char *secret,
const EC_KEY *privkey1, const EC_KEY *peerkey1,
const EC_KEY *privkey2, const EC_KEY *peerkey2,
const unsigned char *sender_pub,
const unsigned char *recipient_pub)
{
int ret = 0;
EVP_KDF_CTX *kdfctx = NULL;
unsigned char sender_authpub[OSSL_HPKE_MAX_PUBLIC];
unsigned char dhkm[OSSL_HPKE_MAX_PRIVATE * 2];
unsigned char kemctx[OSSL_HPKE_MAX_PUBLIC * 3];
size_t sender_authpublen;
size_t kemctxlen = 0, dhkmlen = 0;
const OSSL_HPKE_KEM_INFO *info = ctx->info;
size_t encodedpublen = info->Npk;
size_t encodedprivlen = info->Nsk;
int auth = ctx->sender_authkey != NULL;
if (!generate_ecdhkm(privkey1, peerkey1, dhkm, sizeof(dhkm), encodedprivlen))
goto err;
dhkmlen = encodedprivlen;
kemctxlen = 2 * encodedpublen;
/* Concat the optional second ECDH (used for Auth) */
if (auth) {
/* Get the public key of the auth sender in encoded form */
if (!ecpubkey_todata(ctx->sender_authkey, sender_authpub,
&sender_authpublen, sizeof(sender_authpub)))
goto err;
if (sender_authpublen != encodedpublen) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY,
"Invalid sender auth public key");
goto err;
}
if (!generate_ecdhkm(privkey2, peerkey2,
dhkm + dhkmlen, sizeof(dhkm) - dhkmlen,
encodedprivlen))
goto err;
dhkmlen += encodedprivlen;
kemctxlen += encodedpublen;
}
if (kemctxlen > sizeof(kemctx))
goto err;
/* kemctx is the concat of both sides encoded public key */
memcpy(kemctx, sender_pub, info->Npk);
memcpy(kemctx + info->Npk, recipient_pub, info->Npk);
if (auth)
memcpy(kemctx + 2 * encodedpublen, sender_authpub, encodedpublen);
kdfctx = ossl_kdf_ctx_create(ctx->kdfname, info->mdname,
ctx->libctx, ctx->propq);
if (kdfctx == NULL)
goto err;
if (!dhkem_extract_and_expand(kdfctx, secret, info->Nsecret,
info->kem_id, dhkm, dhkmlen,
kemctx, kemctxlen))
goto err;
ret = 1;
err:
OPENSSL_cleanse(dhkm, dhkmlen);
EVP_KDF_CTX_free(kdfctx);
return ret;
}
/*
* Do a DHKEM encapsulate operation.
*
* See Section 4.1 Encap() and AuthEncap()
*
* Params:
* ctx A context object holding the recipients public key and the
* optional senders auth private key.
* enc A buffer to return the senders ephemeral public key.
* Setting this to NULL allows the enclen and secretlen to return
* values, without calculating the secret.
* enclen Passes in the max size of the enc buffer and returns the
* encoded public key length.
* secret A buffer to return the calculated shared secret.
* secretlen Passes in the max size of the secret buffer and returns the
* secret length.
* Returns: 1 on success or 0 otherwise.
*/
static int dhkem_encap(PROV_EC_CTX *ctx,
unsigned char *enc, size_t *enclen,
unsigned char *secret, size_t *secretlen)
{
int ret = 0;
EC_KEY *sender_ephemkey = NULL;
unsigned char sender_pub[OSSL_HPKE_MAX_PUBLIC];
unsigned char recipient_pub[OSSL_HPKE_MAX_PUBLIC];
size_t sender_publen, recipient_publen;
const OSSL_HPKE_KEM_INFO *info = ctx->info;
if (enc == NULL) {
if (enclen == NULL && secretlen == NULL)
return 0;
if (enclen != NULL)
*enclen = info->Nenc;
if (secretlen != NULL)
*secretlen = info->Nsecret;
return 1;
}
if (*secretlen < info->Nsecret) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*secretlen too small");
return 0;
}
if (*enclen < info->Nenc) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*enclen too small");
return 0;
}
/* Create an ephemeral key */
sender_ephemkey = derivekey(ctx, ctx->ikm, ctx->ikmlen);
if (sender_ephemkey == NULL)
goto err;
if (!ecpubkey_todata(sender_ephemkey, sender_pub, &sender_publen,
sizeof(sender_pub))
|| !ecpubkey_todata(ctx->recipient_key, recipient_pub,
&recipient_publen, sizeof(recipient_pub)))
goto err;
if (sender_publen != info->Npk
|| recipient_publen != sender_publen) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, "Invalid public key");
goto err;
}
if (!derive_secret(ctx, secret,
sender_ephemkey, ctx->recipient_key,
ctx->sender_authkey, ctx->recipient_key,
sender_pub, recipient_pub))
goto err;
/* Return the senders ephemeral public key in encoded form */
memcpy(enc, sender_pub, sender_publen);
*enclen = sender_publen;
*secretlen = info->Nsecret;
ret = 1;
err:
EC_KEY_free(sender_ephemkey);
return ret;
}
/*
* Do a DHKEM decapsulate operation.
* See Section 4.1 Decap() and Auth Decap()
*
* Params:
* ctx A context object holding the recipients private key and the
* optional senders auth public key.
* secret A buffer to return the calculated shared secret. Setting this to
* NULL can be used to return the secretlen.
* secretlen Passes in the max size of the secret buffer and returns the
* secret length.
* enc A buffer containing the senders ephemeral public key that was returned
* from dhkem_encap().
* enclen The length in bytes of enc.
* Returns: 1 If the shared secret is returned or 0 on error.
*/
static int dhkem_decap(PROV_EC_CTX *ctx,
unsigned char *secret, size_t *secretlen,
const unsigned char *enc, size_t enclen)
{
int ret = 0;
EC_KEY *sender_ephempubkey = NULL;
const OSSL_HPKE_KEM_INFO *info = ctx->info;
unsigned char recipient_pub[OSSL_HPKE_MAX_PUBLIC];
size_t recipient_publen;
size_t encodedpublen = info->Npk;
if (secret == NULL) {
*secretlen = info->Nsecret;
return 1;
}
if (*secretlen < info->Nsecret) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*secretlen too small");
return 0;
}
if (enclen != encodedpublen) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, "Invalid enc public key");
return 0;
}
sender_ephempubkey = eckey_frompub(ctx->recipient_key, enc, enclen);
if (sender_ephempubkey == NULL)
goto err;
if (!ecpubkey_todata(ctx->recipient_key, recipient_pub, &recipient_publen,
sizeof(recipient_pub)))
goto err;
if (recipient_publen != encodedpublen) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, "Invalid recipient public key");
goto err;
}
if (!derive_secret(ctx, secret,
ctx->recipient_key, sender_ephempubkey,
ctx->recipient_key, ctx->sender_authkey,
enc, recipient_pub))
goto err;
*secretlen = info->Nsecret;
ret = 1;
err:
EC_KEY_free(sender_ephempubkey);
return ret;
}
static int eckem_encapsulate(void *vctx, unsigned char *out, size_t *outlen,
unsigned char *secret, size_t *secretlen)
{
PROV_EC_CTX *ctx = (PROV_EC_CTX *)vctx;
switch (ctx->mode) {
case KEM_MODE_DHKEM:
return dhkem_encap(ctx, out, outlen, secret, secretlen);
default:
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE);
return -2;
}
}
static int eckem_decapsulate(void *vctx, unsigned char *out, size_t *outlen,
const unsigned char *in, size_t inlen)
{
PROV_EC_CTX *ctx = (PROV_EC_CTX *)vctx;
switch (ctx->mode) {
case KEM_MODE_DHKEM:
return dhkem_decap(ctx, out, outlen, in, inlen);
default:
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE);
return -2;
}
}
const OSSL_DISPATCH ossl_ec_asym_kem_functions[] = {
{ OSSL_FUNC_KEM_NEWCTX, (void (*)(void))eckem_newctx },
{ OSSL_FUNC_KEM_ENCAPSULATE_INIT,
(void (*)(void))eckem_encapsulate_init },
{ OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))eckem_encapsulate },
{ OSSL_FUNC_KEM_DECAPSULATE_INIT,
(void (*)(void))eckem_decapsulate_init },
{ OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))eckem_decapsulate },
{ OSSL_FUNC_KEM_FREECTX, (void (*)(void))eckem_freectx },
{ OSSL_FUNC_KEM_SET_CTX_PARAMS,
(void (*)(void))eckem_set_ctx_params },
{ OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS,
(void (*)(void))eckem_settable_ctx_params },
{ OSSL_FUNC_KEM_AUTH_ENCAPSULATE_INIT,
(void (*)(void))eckem_auth_encapsulate_init },
{ OSSL_FUNC_KEM_AUTH_DECAPSULATE_INIT,
(void (*)(void))eckem_auth_decapsulate_init },
OSSL_DISPATCH_END
};