325 lines
9.5 KiB
C
325 lines
9.5 KiB
C
/*
|
|
* Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/*
|
|
* Derived from the BLAKE2 reference implementation written by Samuel Neves.
|
|
* Copyright 2012, Samuel Neves <sneves@dei.uc.pt>
|
|
* More information about the BLAKE2 hash function and its implementations
|
|
* can be found at https://blake2.net.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <openssl/crypto.h>
|
|
#include "blake2_impl.h"
|
|
#include "prov/blake2.h"
|
|
|
|
static const uint32_t blake2s_IV[8] =
|
|
{
|
|
0x6A09E667U, 0xBB67AE85U, 0x3C6EF372U, 0xA54FF53AU,
|
|
0x510E527FU, 0x9B05688CU, 0x1F83D9ABU, 0x5BE0CD19U
|
|
};
|
|
|
|
static const uint8_t blake2s_sigma[10][16] =
|
|
{
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
|
|
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } ,
|
|
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } ,
|
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } ,
|
|
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } ,
|
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } ,
|
|
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } ,
|
|
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } ,
|
|
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } ,
|
|
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } ,
|
|
};
|
|
|
|
/* Set that it's the last block we'll compress */
|
|
static ossl_inline void blake2s_set_lastblock(BLAKE2S_CTX *S)
|
|
{
|
|
S->f[0] = -1;
|
|
}
|
|
|
|
/* Initialize the hashing state. */
|
|
static ossl_inline void blake2s_init0(BLAKE2S_CTX *S)
|
|
{
|
|
int i;
|
|
|
|
memset(S, 0, sizeof(BLAKE2S_CTX));
|
|
for (i = 0; i < 8; ++i) {
|
|
S->h[i] = blake2s_IV[i];
|
|
}
|
|
}
|
|
|
|
/* init xors IV with input parameter block and sets the output length */
|
|
static void blake2s_init_param(BLAKE2S_CTX *S, const BLAKE2S_PARAM *P)
|
|
{
|
|
size_t i;
|
|
const uint8_t *p = (const uint8_t *)(P);
|
|
|
|
blake2s_init0(S);
|
|
S->outlen = P->digest_length;
|
|
|
|
/* The param struct is carefully hand packed, and should be 32 bytes on
|
|
* every platform. */
|
|
assert(sizeof(BLAKE2S_PARAM) == 32);
|
|
/* IV XOR ParamBlock */
|
|
for (i = 0; i < 8; ++i) {
|
|
S->h[i] ^= load32(&p[i*4]);
|
|
}
|
|
}
|
|
|
|
void ossl_blake2s_param_init(BLAKE2S_PARAM *P)
|
|
{
|
|
P->digest_length = BLAKE2S_DIGEST_LENGTH;
|
|
P->key_length = 0;
|
|
P->fanout = 1;
|
|
P->depth = 1;
|
|
store32(P->leaf_length, 0);
|
|
store48(P->node_offset, 0);
|
|
P->node_depth = 0;
|
|
P->inner_length = 0;
|
|
memset(P->salt, 0, sizeof(P->salt));
|
|
memset(P->personal, 0, sizeof(P->personal));
|
|
}
|
|
|
|
void ossl_blake2s_param_set_digest_length(BLAKE2S_PARAM *P, uint8_t outlen)
|
|
{
|
|
P->digest_length = outlen;
|
|
}
|
|
|
|
void ossl_blake2s_param_set_key_length(BLAKE2S_PARAM *P, uint8_t keylen)
|
|
{
|
|
P->key_length = keylen;
|
|
}
|
|
|
|
void ossl_blake2s_param_set_personal(BLAKE2S_PARAM *P, const uint8_t *personal,
|
|
size_t len)
|
|
{
|
|
memcpy(P->personal, personal, len);
|
|
memset(P->personal + len, 0, BLAKE2S_PERSONALBYTES - len);
|
|
}
|
|
|
|
void ossl_blake2s_param_set_salt(BLAKE2S_PARAM *P, const uint8_t *salt,
|
|
size_t len)
|
|
{
|
|
memcpy(P->salt, salt, len);
|
|
memset(P->salt + len, 0, BLAKE2S_SALTBYTES - len);}
|
|
|
|
/*
|
|
* Initialize the hashing context with the given parameter block.
|
|
* Always returns 1.
|
|
*/
|
|
int ossl_blake2s_init(BLAKE2S_CTX *c, const BLAKE2S_PARAM *P)
|
|
{
|
|
blake2s_init_param(c, P);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Initialize the hashing context with the given parameter block and key.
|
|
* Always returns 1.
|
|
*/
|
|
int ossl_blake2s_init_key(BLAKE2S_CTX *c, const BLAKE2S_PARAM *P,
|
|
const void *key)
|
|
{
|
|
blake2s_init_param(c, P);
|
|
|
|
/* Pad the key to form first data block */
|
|
{
|
|
uint8_t block[BLAKE2S_BLOCKBYTES] = {0};
|
|
|
|
memcpy(block, key, P->key_length);
|
|
ossl_blake2s_update(c, block, BLAKE2S_BLOCKBYTES);
|
|
OPENSSL_cleanse(block, BLAKE2S_BLOCKBYTES);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Permute the state while xoring in the block of data. */
|
|
static void blake2s_compress(BLAKE2S_CTX *S,
|
|
const uint8_t *blocks,
|
|
size_t len)
|
|
{
|
|
uint32_t m[16];
|
|
uint32_t v[16];
|
|
size_t i;
|
|
size_t increment;
|
|
|
|
/*
|
|
* There are two distinct usage vectors for this function:
|
|
*
|
|
* a) BLAKE2s_Update uses it to process complete blocks,
|
|
* possibly more than one at a time;
|
|
*
|
|
* b) BLAK2s_Final uses it to process last block, always
|
|
* single but possibly incomplete, in which case caller
|
|
* pads input with zeros.
|
|
*/
|
|
assert(len < BLAKE2S_BLOCKBYTES || len % BLAKE2S_BLOCKBYTES == 0);
|
|
|
|
/*
|
|
* Since last block is always processed with separate call,
|
|
* |len| not being multiple of complete blocks can be observed
|
|
* only with |len| being less than BLAKE2S_BLOCKBYTES ("less"
|
|
* including even zero), which is why following assignment doesn't
|
|
* have to reside inside the main loop below.
|
|
*/
|
|
increment = len < BLAKE2S_BLOCKBYTES ? len : BLAKE2S_BLOCKBYTES;
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
v[i] = S->h[i];
|
|
}
|
|
|
|
do {
|
|
for (i = 0; i < 16; ++i) {
|
|
m[i] = load32(blocks + i * sizeof(m[i]));
|
|
}
|
|
|
|
/* blake2s_increment_counter */
|
|
S->t[0] += increment;
|
|
S->t[1] += (S->t[0] < increment);
|
|
|
|
v[ 8] = blake2s_IV[0];
|
|
v[ 9] = blake2s_IV[1];
|
|
v[10] = blake2s_IV[2];
|
|
v[11] = blake2s_IV[3];
|
|
v[12] = S->t[0] ^ blake2s_IV[4];
|
|
v[13] = S->t[1] ^ blake2s_IV[5];
|
|
v[14] = S->f[0] ^ blake2s_IV[6];
|
|
v[15] = S->f[1] ^ blake2s_IV[7];
|
|
#define G(r,i,a,b,c,d) \
|
|
do { \
|
|
a = a + b + m[blake2s_sigma[r][2*i+0]]; \
|
|
d = rotr32(d ^ a, 16); \
|
|
c = c + d; \
|
|
b = rotr32(b ^ c, 12); \
|
|
a = a + b + m[blake2s_sigma[r][2*i+1]]; \
|
|
d = rotr32(d ^ a, 8); \
|
|
c = c + d; \
|
|
b = rotr32(b ^ c, 7); \
|
|
} while (0)
|
|
#define ROUND(r) \
|
|
do { \
|
|
G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \
|
|
G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \
|
|
G(r,2,v[ 2],v[ 6],v[10],v[14]); \
|
|
G(r,3,v[ 3],v[ 7],v[11],v[15]); \
|
|
G(r,4,v[ 0],v[ 5],v[10],v[15]); \
|
|
G(r,5,v[ 1],v[ 6],v[11],v[12]); \
|
|
G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \
|
|
G(r,7,v[ 3],v[ 4],v[ 9],v[14]); \
|
|
} while (0)
|
|
#if defined(OPENSSL_SMALL_FOOTPRINT)
|
|
/* almost 3x reduction on x86_64, 4.5x on ARMv8, 4x on ARMv4 */
|
|
for (i = 0; i < 10; i++) {
|
|
ROUND(i);
|
|
}
|
|
#else
|
|
ROUND(0);
|
|
ROUND(1);
|
|
ROUND(2);
|
|
ROUND(3);
|
|
ROUND(4);
|
|
ROUND(5);
|
|
ROUND(6);
|
|
ROUND(7);
|
|
ROUND(8);
|
|
ROUND(9);
|
|
#endif
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
S->h[i] = v[i] ^= v[i + 8] ^ S->h[i];
|
|
}
|
|
#undef G
|
|
#undef ROUND
|
|
blocks += increment;
|
|
len -= increment;
|
|
} while (len);
|
|
}
|
|
|
|
/* Absorb the input data into the hash state. Always returns 1. */
|
|
int ossl_blake2s_update(BLAKE2S_CTX *c, const void *data, size_t datalen)
|
|
{
|
|
const uint8_t *in = data;
|
|
size_t fill;
|
|
|
|
/*
|
|
* Intuitively one would expect intermediate buffer, c->buf, to
|
|
* store incomplete blocks. But in this case we are interested to
|
|
* temporarily stash even complete blocks, because last one in the
|
|
* stream has to be treated in special way, and at this point we
|
|
* don't know if last block in *this* call is last one "ever". This
|
|
* is the reason for why |datalen| is compared as >, and not >=.
|
|
*/
|
|
fill = sizeof(c->buf) - c->buflen;
|
|
if (datalen > fill) {
|
|
if (c->buflen) {
|
|
memcpy(c->buf + c->buflen, in, fill); /* Fill buffer */
|
|
blake2s_compress(c, c->buf, BLAKE2S_BLOCKBYTES);
|
|
c->buflen = 0;
|
|
in += fill;
|
|
datalen -= fill;
|
|
}
|
|
if (datalen > BLAKE2S_BLOCKBYTES) {
|
|
size_t stashlen = datalen % BLAKE2S_BLOCKBYTES;
|
|
/*
|
|
* If |datalen| is a multiple of the blocksize, stash
|
|
* last complete block, it can be final one...
|
|
*/
|
|
stashlen = stashlen ? stashlen : BLAKE2S_BLOCKBYTES;
|
|
datalen -= stashlen;
|
|
blake2s_compress(c, in, datalen);
|
|
in += datalen;
|
|
datalen = stashlen;
|
|
}
|
|
}
|
|
|
|
assert(datalen <= BLAKE2S_BLOCKBYTES);
|
|
|
|
memcpy(c->buf + c->buflen, in, datalen);
|
|
c->buflen += datalen; /* Be lazy, do not compress */
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Calculate the final hash and save it in md.
|
|
* Always returns 1.
|
|
*/
|
|
int ossl_blake2s_final(unsigned char *md, BLAKE2S_CTX *c)
|
|
{
|
|
uint8_t outbuffer[BLAKE2S_OUTBYTES] = {0};
|
|
uint8_t *target = outbuffer;
|
|
int iter = (c->outlen + 3) / 4;
|
|
int i;
|
|
|
|
/* Avoid writing to the temporary buffer if possible */
|
|
if ((c->outlen % sizeof(c->h[0])) == 0)
|
|
target = md;
|
|
|
|
blake2s_set_lastblock(c);
|
|
/* Padding */
|
|
memset(c->buf + c->buflen, 0, sizeof(c->buf) - c->buflen);
|
|
blake2s_compress(c, c->buf, c->buflen);
|
|
|
|
/* Output full hash to buffer */
|
|
for (i = 0; i < iter; ++i)
|
|
store32(target + sizeof(c->h[i]) * i, c->h[i]);
|
|
|
|
if (target != md) {
|
|
memcpy(md, target, c->outlen);
|
|
OPENSSL_cleanse(target, sizeof(outbuffer));
|
|
}
|
|
|
|
OPENSSL_cleanse(c, sizeof(BLAKE2S_CTX));
|
|
return 1;
|
|
}
|