212 lines
6.8 KiB
C
212 lines
6.8 KiB
C
/*
|
|
* Copyright 2008-2021 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <openssl/crypto.h>
|
|
#include "crypto/modes.h"
|
|
|
|
#if defined(__GNUC__) && !defined(STRICT_ALIGNMENT)
|
|
typedef size_t size_t_aX __attribute((__aligned__(1)));
|
|
#else
|
|
typedef size_t size_t_aX;
|
|
#endif
|
|
|
|
/*
|
|
* The input and output encrypted as though 128bit cfb mode is being used.
|
|
* The extra state information to record how much of the 128bit block we have
|
|
* used is contained in *num;
|
|
*/
|
|
void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out,
|
|
size_t len, const void *key,
|
|
unsigned char ivec[16], int *num,
|
|
int enc, block128_f block)
|
|
{
|
|
unsigned int n;
|
|
size_t l = 0;
|
|
|
|
if (*num < 0) {
|
|
/* There is no good way to signal an error return from here */
|
|
*num = -1;
|
|
return;
|
|
}
|
|
n = *num;
|
|
|
|
if (enc) {
|
|
#if !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
if (16 % sizeof(size_t) == 0) { /* always true actually */
|
|
do {
|
|
while (n && len) {
|
|
*(out++) = ivec[n] ^= *(in++);
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
# if defined(STRICT_ALIGNMENT)
|
|
if (((size_t)in | (size_t)out | (size_t)ivec) %
|
|
sizeof(size_t) != 0)
|
|
break;
|
|
# endif
|
|
while (len >= 16) {
|
|
(*block) (ivec, ivec, key);
|
|
for (; n < 16; n += sizeof(size_t)) {
|
|
*(size_t_aX *)(out + n) =
|
|
*(size_t_aX *)(ivec + n)
|
|
^= *(size_t_aX *)(in + n);
|
|
}
|
|
len -= 16;
|
|
out += 16;
|
|
in += 16;
|
|
n = 0;
|
|
}
|
|
if (len) {
|
|
(*block) (ivec, ivec, key);
|
|
while (len--) {
|
|
out[n] = ivec[n] ^= in[n];
|
|
++n;
|
|
}
|
|
}
|
|
*num = n;
|
|
return;
|
|
} while (0);
|
|
}
|
|
/* the rest would be commonly eliminated by x86* compiler */
|
|
#endif
|
|
while (l < len) {
|
|
if (n == 0) {
|
|
(*block) (ivec, ivec, key);
|
|
}
|
|
out[l] = ivec[n] ^= in[l];
|
|
++l;
|
|
n = (n + 1) % 16;
|
|
}
|
|
*num = n;
|
|
} else {
|
|
#if !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
if (16 % sizeof(size_t) == 0) { /* always true actually */
|
|
do {
|
|
while (n && len) {
|
|
unsigned char c;
|
|
*(out++) = ivec[n] ^ (c = *(in++));
|
|
ivec[n] = c;
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
# if defined(STRICT_ALIGNMENT)
|
|
if (((size_t)in | (size_t)out | (size_t)ivec) %
|
|
sizeof(size_t) != 0)
|
|
break;
|
|
# endif
|
|
while (len >= 16) {
|
|
(*block) (ivec, ivec, key);
|
|
for (; n < 16; n += sizeof(size_t)) {
|
|
size_t t = *(size_t_aX *)(in + n);
|
|
*(size_t_aX *)(out + n)
|
|
= *(size_t_aX *)(ivec + n) ^ t;
|
|
*(size_t_aX *)(ivec + n) = t;
|
|
}
|
|
len -= 16;
|
|
out += 16;
|
|
in += 16;
|
|
n = 0;
|
|
}
|
|
if (len) {
|
|
(*block) (ivec, ivec, key);
|
|
while (len--) {
|
|
unsigned char c;
|
|
out[n] = ivec[n] ^ (c = in[n]);
|
|
ivec[n] = c;
|
|
++n;
|
|
}
|
|
}
|
|
*num = n;
|
|
return;
|
|
} while (0);
|
|
}
|
|
/* the rest would be commonly eliminated by x86* compiler */
|
|
#endif
|
|
while (l < len) {
|
|
unsigned char c;
|
|
if (n == 0) {
|
|
(*block) (ivec, ivec, key);
|
|
}
|
|
out[l] = ivec[n] ^ (c = in[l]);
|
|
ivec[n] = c;
|
|
++l;
|
|
n = (n + 1) % 16;
|
|
}
|
|
*num = n;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This expects a single block of size nbits for both in and out. Note that
|
|
* it corrupts any extra bits in the last byte of out
|
|
*/
|
|
static void cfbr_encrypt_block(const unsigned char *in, unsigned char *out,
|
|
int nbits, const void *key,
|
|
unsigned char ivec[16], int enc,
|
|
block128_f block)
|
|
{
|
|
int n, rem, num;
|
|
unsigned char ovec[16 * 2 + 1]; /* +1 because we dereference (but don't
|
|
* use) one byte off the end */
|
|
|
|
if (nbits <= 0 || nbits > 128)
|
|
return;
|
|
|
|
/* fill in the first half of the new IV with the current IV */
|
|
memcpy(ovec, ivec, 16);
|
|
/* construct the new IV */
|
|
(*block) (ivec, ivec, key);
|
|
num = (nbits + 7) / 8;
|
|
if (enc) /* encrypt the input */
|
|
for (n = 0; n < num; ++n)
|
|
out[n] = (ovec[16 + n] = in[n] ^ ivec[n]);
|
|
else /* decrypt the input */
|
|
for (n = 0; n < num; ++n)
|
|
out[n] = (ovec[16 + n] = in[n]) ^ ivec[n];
|
|
/* shift ovec left... */
|
|
rem = nbits % 8;
|
|
num = nbits / 8;
|
|
if (rem == 0)
|
|
memcpy(ivec, ovec + num, 16);
|
|
else
|
|
for (n = 0; n < 16; ++n)
|
|
ivec[n] = ovec[n + num] << rem | ovec[n + num + 1] >> (8 - rem);
|
|
|
|
/* it is not necessary to cleanse ovec, since the IV is not secret */
|
|
}
|
|
|
|
/* N.B. This expects the input to be packed, MS bit first */
|
|
void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out,
|
|
size_t bits, const void *key,
|
|
unsigned char ivec[16], int *num,
|
|
int enc, block128_f block)
|
|
{
|
|
size_t n;
|
|
unsigned char c[1], d[1];
|
|
|
|
for (n = 0; n < bits; ++n) {
|
|
c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0;
|
|
cfbr_encrypt_block(c, d, 1, key, ivec, enc, block);
|
|
out[n / 8] = (out[n / 8] & ~(1 << (unsigned int)(7 - n % 8))) |
|
|
((d[0] & 0x80) >> (unsigned int)(n % 8));
|
|
}
|
|
}
|
|
|
|
void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out,
|
|
size_t length, const void *key,
|
|
unsigned char ivec[16], int *num,
|
|
int enc, block128_f block)
|
|
{
|
|
size_t n;
|
|
|
|
for (n = 0; n < length; ++n)
|
|
cfbr_encrypt_block(&in[n], &out[n], 8, key, ivec, enc, block);
|
|
}
|