dockerfile/examples/openssl/openssl-3.2.1-src/crypto/bn/asm/c64xplus-gf2m.pl

160 lines
4.0 KiB
Raku

#! /usr/bin/env perl
# Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the Apache License 2.0 (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# February 2012
#
# The module implements bn_GF2m_mul_2x2 polynomial multiplication
# used in bn_gf2m.c. It's kind of low-hanging mechanical port from
# C for the time being... The subroutine runs in 37 cycles, which is
# 4.5x faster than compiler-generated code. Though comparison is
# totally unfair, because this module utilizes Galois Field Multiply
# instruction.
$output = pop and open STDOUT,">$output";
($rp,$a1,$a0,$b1,$b0)=("A4","B4","A6","B6","A8"); # argument vector
($Alo,$Alox0,$Alox1,$Alox2,$Alox3)=map("A$_",(16..20));
($Ahi,$Ahix0,$Ahix1,$Ahix2,$Ahix3)=map("B$_",(16..20));
($B_0,$B_1,$B_2,$B_3)=("B5","A5","A7","B7");
($A,$B)=($Alo,$B_1);
$xFF="B1";
sub mul_1x1_upper {
my ($A,$B)=@_;
$code.=<<___;
EXTU $B,8,24,$B_2 ; smash $B to 4 bytes
|| AND $B,$xFF,$B_0
|| SHRU $B,24,$B_3
SHRU $A,16, $Ahi ; smash $A to two halfwords
|| EXTU $A,16,16,$Alo
XORMPY $Alo,$B_2,$Alox2 ; 16x8 bits multiplication
|| XORMPY $Ahi,$B_2,$Ahix2
|| EXTU $B,16,24,$B_1
XORMPY $Alo,$B_0,$Alox0
|| XORMPY $Ahi,$B_0,$Ahix0
XORMPY $Alo,$B_3,$Alox3
|| XORMPY $Ahi,$B_3,$Ahix3
XORMPY $Alo,$B_1,$Alox1
|| XORMPY $Ahi,$B_1,$Ahix1
___
}
sub mul_1x1_merged {
my ($OUTlo,$OUThi,$A,$B)=@_;
$code.=<<___;
EXTU $B,8,24,$B_2 ; smash $B to 4 bytes
|| AND $B,$xFF,$B_0
|| SHRU $B,24,$B_3
SHRU $A,16, $Ahi ; smash $A to two halfwords
|| EXTU $A,16,16,$Alo
XOR $Ahix0,$Alox2,$Ahix0
|| MV $Ahix2,$OUThi
|| XORMPY $Alo,$B_2,$Alox2
XORMPY $Ahi,$B_2,$Ahix2
|| EXTU $B,16,24,$B_1
|| XORMPY $Alo,$B_0,A1 ; $Alox0
XOR $Ahix1,$Alox3,$Ahix1
|| SHL $Ahix0,16,$OUTlo
|| SHRU $Ahix0,16,$Ahix0
XOR $Alox0,$OUTlo,$OUTlo
|| XOR $Ahix0,$OUThi,$OUThi
|| XORMPY $Ahi,$B_0,$Ahix0
|| XORMPY $Alo,$B_3,$Alox3
|| SHL $Alox1,8,$Alox1
|| SHL $Ahix3,8,$Ahix3
XOR $Alox1,$OUTlo,$OUTlo
|| XOR $Ahix3,$OUThi,$OUThi
|| XORMPY $Ahi,$B_3,$Ahix3
|| SHL $Ahix1,24,$Alox1
|| SHRU $Ahix1,8, $Ahix1
XOR $Alox1,$OUTlo,$OUTlo
|| XOR $Ahix1,$OUThi,$OUThi
|| XORMPY $Alo,$B_1,$Alox1
|| XORMPY $Ahi,$B_1,$Ahix1
|| MV A1,$Alox0
___
}
sub mul_1x1_lower {
my ($OUTlo,$OUThi)=@_;
$code.=<<___;
;NOP
XOR $Ahix0,$Alox2,$Ahix0
|| MV $Ahix2,$OUThi
NOP
XOR $Ahix1,$Alox3,$Ahix1
|| SHL $Ahix0,16,$OUTlo
|| SHRU $Ahix0,16,$Ahix0
XOR $Alox0,$OUTlo,$OUTlo
|| XOR $Ahix0,$OUThi,$OUThi
|| SHL $Alox1,8,$Alox1
|| SHL $Ahix3,8,$Ahix3
XOR $Alox1,$OUTlo,$OUTlo
|| XOR $Ahix3,$OUThi,$OUThi
|| SHL $Ahix1,24,$Alox1
|| SHRU $Ahix1,8, $Ahix1
XOR $Alox1,$OUTlo,$OUTlo
|| XOR $Ahix1,$OUThi,$OUThi
___
}
$code.=<<___;
.text
.if .ASSEMBLER_VERSION<7000000
.asg 0,__TI_EABI__
.endif
.if __TI_EABI__
.asg bn_GF2m_mul_2x2,_bn_GF2m_mul_2x2
.endif
.global _bn_GF2m_mul_2x2
_bn_GF2m_mul_2x2:
.asmfunc
MVK 0xFF,$xFF
___
&mul_1x1_upper($a0,$b0); # a0·b0
$code.=<<___;
|| MV $b1,$B
MV $a1,$A
___
&mul_1x1_merged("A28","B28",$A,$B); # a0·b0/a1·b1
$code.=<<___;
|| XOR $b0,$b1,$B
XOR $a0,$a1,$A
___
&mul_1x1_merged("A31","B31",$A,$B); # a1·b1/(a0+a1)·(b0+b1)
$code.=<<___;
XOR A28,A31,A29
|| XOR B28,B31,B29 ; a0·b0+a1·b1
___
&mul_1x1_lower("A30","B30"); # (a0+a1)·(b0+b1)
$code.=<<___;
|| BNOP B3
XOR A29,A30,A30
|| XOR B29,B30,B30 ; (a0+a1)·(b0+b1)-a0·b0-a1·b1
XOR B28,A30,A30
|| STW A28,*${rp}[0]
XOR B30,A31,A31
|| STW A30,*${rp}[1]
STW A31,*${rp}[2]
STW B31,*${rp}[3]
.endasmfunc
___
print $code;
close STDOUT or die "error closing STDOUT: $!";