dockerfile/examples/openssl/openssl-3.2.1-src/crypto/bio/bss_dgram_pair.c

1329 lines
35 KiB
C

/*
* Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <errno.h>
#include "bio_local.h"
#include "internal/cryptlib.h"
#include "internal/safe_math.h"
#if !defined(OPENSSL_NO_DGRAM) && !defined(OPENSSL_NO_SOCK)
OSSL_SAFE_MATH_UNSIGNED(size_t, size_t)
/* ===========================================================================
* Byte-wise ring buffer which supports pushing and popping blocks of multiple
* bytes at a time.
*/
struct ring_buf {
unsigned char *start; /* start of buffer */
size_t len; /* size of buffer allocation in bytes */
size_t count; /* number of bytes currently pushed */
/*
* These index into start. Where idx[0] == idx[1], the buffer is full
* (if count is nonzero) and empty otherwise.
*/
size_t idx[2]; /* 0: head, 1: tail */
};
static int ring_buf_init(struct ring_buf *r, size_t nbytes)
{
r->start = OPENSSL_malloc(nbytes);
if (r->start == NULL)
return 0;
r->len = nbytes;
r->idx[0] = r->idx[1] = r->count = 0;
return 1;
}
static void ring_buf_destroy(struct ring_buf *r)
{
OPENSSL_free(r->start);
r->start = NULL;
r->len = 0;
r->count = 0;
}
/*
* Get a pointer to the next place to write data to be pushed to the ring buffer
* (idx=0), or the next data to be popped from the ring buffer (idx=1). The
* pointer is written to *buf and the maximum number of bytes which can be
* read/written are written to *len. After writing data to the buffer, call
* ring_buf_push/pop() with the number of bytes actually read/written, which
* must not exceed the returned length.
*/
static void ring_buf_head_tail(struct ring_buf *r, int idx, uint8_t **buf, size_t *len)
{
size_t max_len = r->len - r->idx[idx];
if (idx == 0 && max_len > r->len - r->count)
max_len = r->len - r->count;
if (idx == 1 && max_len > r->count)
max_len = r->count;
*buf = (uint8_t *)r->start + r->idx[idx];
*len = max_len;
}
#define ring_buf_head(r, buf, len) ring_buf_head_tail((r), 0, (buf), (len))
#define ring_buf_tail(r, buf, len) ring_buf_head_tail((r), 1, (buf), (len))
/*
* Commit bytes to the ring buffer previously filled after a call to
* ring_buf_head().
*/
static void ring_buf_push_pop(struct ring_buf *r, int idx, size_t num_bytes)
{
size_t new_idx;
/* A single push/pop op cannot wrap around, though it can reach the end.
* If the caller adheres to the convention of using the length returned
* by ring_buf_head/tail(), this cannot happen.
*/
if (!ossl_assert(num_bytes <= r->len - r->idx[idx]))
return;
/*
* Must not overfill the buffer, or pop more than is in the buffer either.
*/
if (!ossl_assert(idx != 0 ? num_bytes <= r->count
: num_bytes + r->count <= r->len))
return;
/* Update the index. */
new_idx = r->idx[idx] + num_bytes;
if (new_idx == r->len)
new_idx = 0;
r->idx[idx] = new_idx;
if (idx != 0)
r->count -= num_bytes;
else
r->count += num_bytes;
}
#define ring_buf_push(r, num_bytes) ring_buf_push_pop((r), 0, (num_bytes))
#define ring_buf_pop(r, num_bytes) ring_buf_push_pop((r), 1, (num_bytes))
static void ring_buf_clear(struct ring_buf *r)
{
r->idx[0] = r->idx[1] = r->count = 0;
}
static int ring_buf_resize(struct ring_buf *r, size_t nbytes)
{
unsigned char *new_start;
if (r->start == NULL)
return ring_buf_init(r, nbytes);
if (nbytes == r->len)
return 1;
if (r->count > 0 && nbytes < r->len)
/* fail shrinking the ring buffer when there is any data in it */
return 0;
new_start = OPENSSL_realloc(r->start, nbytes);
if (new_start == NULL)
return 0;
/* Moving tail if it is after (or equal to) head */
if (r->count > 0) {
if (r->idx[0] <= r->idx[1]) {
size_t offset = nbytes - r->len;
memmove(new_start + r->idx[1] + offset, new_start + r->idx[1],
r->len - r->idx[1]);
r->idx[1] += offset;
}
} else {
/* just reset the head/tail because it might be pointing outside */
r->idx[0] = r->idx[1] = 0;
}
r->start = new_start;
r->len = nbytes;
return 1;
}
/* ===========================================================================
* BIO_s_dgram_pair is documented in BIO_s_dgram_pair(3).
*
* INTERNAL DATA STRUCTURE
*
* This is managed internally by using a bytewise ring buffer which supports
* pushing and popping spans of multiple bytes at once. The ring buffer stores
* internal packets which look like this:
*
* struct dgram_hdr hdr;
* uint8_t data[];
*
* The header contains the length of the data and metadata such as
* source/destination addresses.
*
* The datagram pair BIO is designed to support both traditional
* BIO_read/BIO_write (likely to be used by applications) as well as
* BIO_recvmmsg/BIO_sendmmsg.
*/
struct bio_dgram_pair_st;
static int dgram_pair_write(BIO *bio, const char *buf, int sz_);
static int dgram_pair_read(BIO *bio, char *buf, int sz_);
static int dgram_mem_read(BIO *bio, char *buf, int sz_);
static long dgram_pair_ctrl(BIO *bio, int cmd, long num, void *ptr);
static long dgram_mem_ctrl(BIO *bio, int cmd, long num, void *ptr);
static int dgram_pair_init(BIO *bio);
static int dgram_mem_init(BIO *bio);
static int dgram_pair_free(BIO *bio);
static int dgram_pair_sendmmsg(BIO *b, BIO_MSG *msg, size_t stride,
size_t num_msg, uint64_t flags,
size_t *num_processed);
static int dgram_pair_recvmmsg(BIO *b, BIO_MSG *msg, size_t stride,
size_t num_msg, uint64_t flags,
size_t *num_processed);
static int dgram_pair_ctrl_destroy_bio_pair(BIO *bio1);
static size_t dgram_pair_read_inner(struct bio_dgram_pair_st *b, uint8_t *buf,
size_t sz);
#define BIO_MSG_N(array, n) (*(BIO_MSG *)((char *)(array) + (n)*stride))
static const BIO_METHOD dgram_pair_method = {
BIO_TYPE_DGRAM_PAIR,
"BIO dgram pair",
bwrite_conv,
dgram_pair_write,
bread_conv,
dgram_pair_read,
NULL, /* dgram_pair_puts */
NULL, /* dgram_pair_gets */
dgram_pair_ctrl,
dgram_pair_init,
dgram_pair_free,
NULL, /* dgram_pair_callback_ctrl */
dgram_pair_sendmmsg,
dgram_pair_recvmmsg,
};
static const BIO_METHOD dgram_mem_method = {
BIO_TYPE_DGRAM_MEM,
"BIO dgram mem",
bwrite_conv,
dgram_pair_write,
bread_conv,
dgram_mem_read,
NULL, /* dgram_pair_puts */
NULL, /* dgram_pair_gets */
dgram_mem_ctrl,
dgram_mem_init,
dgram_pair_free,
NULL, /* dgram_pair_callback_ctrl */
dgram_pair_sendmmsg,
dgram_pair_recvmmsg,
};
const BIO_METHOD *BIO_s_dgram_pair(void)
{
return &dgram_pair_method;
}
const BIO_METHOD *BIO_s_dgram_mem(void)
{
return &dgram_mem_method;
}
struct dgram_hdr {
size_t len; /* payload length in bytes, not including this struct */
BIO_ADDR src_addr, dst_addr; /* family == 0: not present */
};
struct bio_dgram_pair_st {
/* The other half of the BIO pair. NULL for dgram_mem. */
BIO *peer;
/* Writes are directed to our own ringbuf and reads to our peer. */
struct ring_buf rbuf;
/* Requested size of rbuf buffer in bytes once we initialize. */
size_t req_buf_len;
/* Largest possible datagram size */
size_t mtu;
/* Capability flags. */
uint32_t cap;
/*
* This lock protects updates to our rbuf. Since writes are directed to our
* own rbuf, this means we use this lock for writes and our peer's lock for
* reads.
*/
CRYPTO_RWLOCK *lock;
unsigned int no_trunc : 1; /* Reads fail if they would truncate */
unsigned int local_addr_enable : 1; /* Can use BIO_MSG->local? */
unsigned int role : 1; /* Determines lock order */
unsigned int grows_on_write : 1; /* Set for BIO_s_dgram_mem only */
};
#define MIN_BUF_LEN (1024)
#define is_dgram_pair(b) (b->peer != NULL)
static int dgram_pair_init(BIO *bio)
{
struct bio_dgram_pair_st *b = OPENSSL_zalloc(sizeof(*b));
if (b == NULL)
return 0;
b->mtu = 1472; /* conservative default MTU */
/* default buffer size */
b->req_buf_len = 9 * (sizeof(struct dgram_hdr) + b->mtu);
b->lock = CRYPTO_THREAD_lock_new();
if (b->lock == NULL) {
OPENSSL_free(b);
return 0;
}
bio->ptr = b;
return 1;
}
static int dgram_mem_init(BIO *bio)
{
struct bio_dgram_pair_st *b;
if (!dgram_pair_init(bio))
return 0;
b = bio->ptr;
if (ring_buf_init(&b->rbuf, b->req_buf_len) == 0) {
ERR_raise(ERR_LIB_BIO, ERR_R_BIO_LIB);
return 0;
}
b->grows_on_write = 1;
bio->init = 1;
return 1;
}
static int dgram_pair_free(BIO *bio)
{
struct bio_dgram_pair_st *b;
if (bio == NULL)
return 0;
b = bio->ptr;
if (!ossl_assert(b != NULL))
return 0;
/* We are being freed. Disconnect any peer and destroy buffers. */
dgram_pair_ctrl_destroy_bio_pair(bio);
CRYPTO_THREAD_lock_free(b->lock);
OPENSSL_free(b);
return 1;
}
/* BIO_make_bio_pair (BIO_C_MAKE_BIO_PAIR) */
static int dgram_pair_ctrl_make_bio_pair(BIO *bio1, BIO *bio2)
{
struct bio_dgram_pair_st *b1, *b2;
/* peer must be non-NULL. */
if (bio1 == NULL || bio2 == NULL) {
ERR_raise(ERR_LIB_BIO, BIO_R_INVALID_ARGUMENT);
return 0;
}
/* Ensure the BIO we have been passed is actually a dgram pair BIO. */
if (bio1->method != &dgram_pair_method || bio2->method != &dgram_pair_method) {
ERR_raise_data(ERR_LIB_BIO, BIO_R_INVALID_ARGUMENT,
"both BIOs must be BIO_dgram_pair");
return 0;
}
b1 = bio1->ptr;
b2 = bio2->ptr;
if (!ossl_assert(b1 != NULL && b2 != NULL)) {
ERR_raise(ERR_LIB_BIO, BIO_R_UNINITIALIZED);
return 0;
}
/*
* This ctrl cannot be used to associate a BIO pair half which is already
* associated.
*/
if (b1->peer != NULL || b2->peer != NULL) {
ERR_raise_data(ERR_LIB_BIO, BIO_R_IN_USE,
"cannot associate a BIO_dgram_pair which is already in use");
return 0;
}
if (!ossl_assert(b1->req_buf_len >= MIN_BUF_LEN
&& b2->req_buf_len >= MIN_BUF_LEN)) {
ERR_raise(ERR_LIB_BIO, BIO_R_UNINITIALIZED);
return 0;
}
if (b1->rbuf.len != b1->req_buf_len)
if (ring_buf_init(&b1->rbuf, b1->req_buf_len) == 0) {
ERR_raise(ERR_LIB_BIO, ERR_R_BIO_LIB);
return 0;
}
if (b2->rbuf.len != b2->req_buf_len)
if (ring_buf_init(&b2->rbuf, b2->req_buf_len) == 0) {
ERR_raise(ERR_LIB_BIO, ERR_R_BIO_LIB);
ring_buf_destroy(&b1->rbuf);
return 0;
}
b1->peer = bio2;
b2->peer = bio1;
b1->role = 0;
b2->role = 1;
bio1->init = 1;
bio2->init = 1;
return 1;
}
/* BIO_destroy_bio_pair (BIO_C_DESTROY_BIO_PAIR) */
static int dgram_pair_ctrl_destroy_bio_pair(BIO *bio1)
{
BIO *bio2;
struct bio_dgram_pair_st *b1 = bio1->ptr, *b2;
ring_buf_destroy(&b1->rbuf);
bio1->init = 0;
/* Early return if we don't have a peer. */
if (b1->peer == NULL)
return 1;
bio2 = b1->peer;
b2 = bio2->ptr;
/* Invariant. */
if (!ossl_assert(b2->peer == bio1))
return 0;
/* Free buffers. */
ring_buf_destroy(&b2->rbuf);
bio2->init = 0;
b1->peer = NULL;
b2->peer = NULL;
return 1;
}
/* BIO_eof (BIO_CTRL_EOF) */
static int dgram_pair_ctrl_eof(BIO *bio)
{
struct bio_dgram_pair_st *b = bio->ptr, *peerb;
if (!ossl_assert(b != NULL))
return -1;
/* If we aren't initialized, we can never read anything */
if (!bio->init)
return 1;
if (!is_dgram_pair(b))
return 0;
peerb = b->peer->ptr;
if (!ossl_assert(peerb != NULL))
return -1;
/*
* Since we are emulating datagram semantics, never indicate EOF so long as
* we have a peer.
*/
return 0;
}
/* BIO_set_write_buf_size (BIO_C_SET_WRITE_BUF_SIZE) */
static int dgram_pair_ctrl_set_write_buf_size(BIO *bio, size_t len)
{
struct bio_dgram_pair_st *b = bio->ptr;
/* Changing buffer sizes is not permitted while a peer is connected. */
if (b->peer != NULL) {
ERR_raise(ERR_LIB_BIO, BIO_R_IN_USE);
return 0;
}
/* Enforce minimum size. */
if (len < MIN_BUF_LEN)
len = MIN_BUF_LEN;
if (b->rbuf.start != NULL) {
if (!ring_buf_resize(&b->rbuf, len))
return 0;
}
b->req_buf_len = len;
b->grows_on_write = 0;
return 1;
}
/* BIO_reset (BIO_CTRL_RESET) */
static int dgram_pair_ctrl_reset(BIO *bio)
{
struct bio_dgram_pair_st *b = bio->ptr;
ring_buf_clear(&b->rbuf);
return 1;
}
/* BIO_pending (BIO_CTRL_PENDING) (Threadsafe) */
static size_t dgram_pair_ctrl_pending(BIO *bio)
{
size_t saved_idx, saved_count;
struct bio_dgram_pair_st *b = bio->ptr, *readb;
struct dgram_hdr hdr;
size_t l;
/* Safe to check; init may not change during this call */
if (!bio->init)
return 0;
if (is_dgram_pair(b))
readb = b->peer->ptr;
else
readb = b;
if (CRYPTO_THREAD_write_lock(readb->lock) == 0)
return 0;
saved_idx = readb->rbuf.idx[1];
saved_count = readb->rbuf.count;
l = dgram_pair_read_inner(readb, (uint8_t *)&hdr, sizeof(hdr));
readb->rbuf.idx[1] = saved_idx;
readb->rbuf.count = saved_count;
CRYPTO_THREAD_unlock(readb->lock);
if (!ossl_assert(l == 0 || l == sizeof(hdr)))
return 0;
return l > 0 ? hdr.len : 0;
}
/* BIO_get_write_guarantee (BIO_C_GET_WRITE_GUARANTEE) (Threadsafe) */
static size_t dgram_pair_ctrl_get_write_guarantee(BIO *bio)
{
size_t l;
struct bio_dgram_pair_st *b = bio->ptr;
if (CRYPTO_THREAD_read_lock(b->lock) == 0)
return 0;
l = b->rbuf.len - b->rbuf.count;
if (l >= sizeof(struct dgram_hdr))
l -= sizeof(struct dgram_hdr);
/*
* If the amount of buffer space would not be enough to accommodate the
* worst-case size of a datagram, report no space available.
*/
if (l < b->mtu)
l = 0;
CRYPTO_THREAD_unlock(b->lock);
return l;
}
/* BIO_dgram_get_local_addr_cap (BIO_CTRL_DGRAM_GET_LOCAL_ADDR_CAP) */
static int dgram_pair_ctrl_get_local_addr_cap(BIO *bio)
{
struct bio_dgram_pair_st *b = bio->ptr, *readb;
if (!bio->init)
return 0;
if (is_dgram_pair(b))
readb = b->peer->ptr;
else
readb = b;
return (~readb->cap & (BIO_DGRAM_CAP_HANDLES_SRC_ADDR
| BIO_DGRAM_CAP_PROVIDES_DST_ADDR)) == 0;
}
/* BIO_dgram_get_effective_caps (BIO_CTRL_DGRAM_GET_EFFECTIVE_CAPS) */
static int dgram_pair_ctrl_get_effective_caps(BIO *bio)
{
struct bio_dgram_pair_st *b = bio->ptr, *peerb;
if (b->peer == NULL)
return 0;
peerb = b->peer->ptr;
return peerb->cap;
}
/* BIO_dgram_get_caps (BIO_CTRL_DGRAM_GET_CAPS) */
static uint32_t dgram_pair_ctrl_get_caps(BIO *bio)
{
struct bio_dgram_pair_st *b = bio->ptr;
return b->cap;
}
/* BIO_dgram_set_caps (BIO_CTRL_DGRAM_SET_CAPS) */
static int dgram_pair_ctrl_set_caps(BIO *bio, uint32_t caps)
{
struct bio_dgram_pair_st *b = bio->ptr;
b->cap = caps;
return 1;
}
/* BIO_dgram_get_local_addr_enable (BIO_CTRL_DGRAM_GET_LOCAL_ADDR_ENABLE) */
static int dgram_pair_ctrl_get_local_addr_enable(BIO *bio)
{
struct bio_dgram_pair_st *b = bio->ptr;
return b->local_addr_enable;
}
/* BIO_dgram_set_local_addr_enable (BIO_CTRL_DGRAM_SET_LOCAL_ADDR_ENABLE) */
static int dgram_pair_ctrl_set_local_addr_enable(BIO *bio, int enable)
{
struct bio_dgram_pair_st *b = bio->ptr;
if (dgram_pair_ctrl_get_local_addr_cap(bio) == 0)
return 0;
b->local_addr_enable = (enable != 0 ? 1 : 0);
return 1;
}
/* BIO_dgram_get_mtu (BIO_CTRL_DGRAM_GET_MTU) */
static int dgram_pair_ctrl_get_mtu(BIO *bio)
{
struct bio_dgram_pair_st *b = bio->ptr;
return b->mtu;
}
/* BIO_dgram_set_mtu (BIO_CTRL_DGRAM_SET_MTU) */
static int dgram_pair_ctrl_set_mtu(BIO *bio, size_t mtu)
{
struct bio_dgram_pair_st *b = bio->ptr, *peerb;
b->mtu = mtu;
if (b->peer != NULL) {
peerb = b->peer->ptr;
peerb->mtu = mtu;
}
return 1;
}
/* Partially threadsafe (some commands) */
static long dgram_mem_ctrl(BIO *bio, int cmd, long num, void *ptr)
{
long ret = 1;
struct bio_dgram_pair_st *b = bio->ptr;
if (!ossl_assert(b != NULL))
return 0;
switch (cmd) {
/*
* BIO_set_write_buf_size: Set the size of the ring buffer used for storing
* datagrams. No more writes can be performed once the buffer is filled up,
* until reads are performed. This cannot be used after a peer is connected.
*/
case BIO_C_SET_WRITE_BUF_SIZE: /* Non-threadsafe */
ret = (long)dgram_pair_ctrl_set_write_buf_size(bio, (size_t)num);
break;
/*
* BIO_get_write_buf_size: Get ring buffer size.
*/
case BIO_C_GET_WRITE_BUF_SIZE: /* Non-threadsafe */
ret = (long)b->req_buf_len;
break;
/*
* BIO_reset: Clear all data which was written to this side of the pair.
*/
case BIO_CTRL_RESET: /* Non-threadsafe */
dgram_pair_ctrl_reset(bio);
break;
/*
* BIO_get_write_guarantee: Any BIO_write providing a buffer less than or
* equal to this value is guaranteed to succeed.
*/
case BIO_C_GET_WRITE_GUARANTEE: /* Threadsafe */
ret = (long)dgram_pair_ctrl_get_write_guarantee(bio);
break;
/* BIO_pending: Bytes available to read. */
case BIO_CTRL_PENDING: /* Threadsafe */
ret = (long)dgram_pair_ctrl_pending(bio);
break;
/* BIO_flush: No-op. */
case BIO_CTRL_FLUSH: /* Threadsafe */
break;
/* BIO_dgram_get_no_trunc */
case BIO_CTRL_DGRAM_GET_NO_TRUNC: /* Non-threadsafe */
ret = (long)b->no_trunc;
break;
/* BIO_dgram_set_no_trunc */
case BIO_CTRL_DGRAM_SET_NO_TRUNC: /* Non-threadsafe */
b->no_trunc = (num > 0);
break;
/* BIO_dgram_get_local_addr_enable */
case BIO_CTRL_DGRAM_GET_LOCAL_ADDR_ENABLE: /* Non-threadsafe */
*(int *)ptr = (int)dgram_pair_ctrl_get_local_addr_enable(bio);
break;
/* BIO_dgram_set_local_addr_enable */
case BIO_CTRL_DGRAM_SET_LOCAL_ADDR_ENABLE: /* Non-threadsafe */
ret = (long)dgram_pair_ctrl_set_local_addr_enable(bio, num);
break;
/* BIO_dgram_get_local_addr_cap: Can local addresses be supported? */
case BIO_CTRL_DGRAM_GET_LOCAL_ADDR_CAP: /* Non-threadsafe */
ret = (long)dgram_pair_ctrl_get_local_addr_cap(bio);
break;
/* BIO_dgram_get_effective_caps */
case BIO_CTRL_DGRAM_GET_EFFECTIVE_CAPS: /* Non-threadsafe */
/* BIO_dgram_get_caps */
case BIO_CTRL_DGRAM_GET_CAPS: /* Non-threadsafe */
ret = (long)dgram_pair_ctrl_get_caps(bio);
break;
/* BIO_dgram_set_caps */
case BIO_CTRL_DGRAM_SET_CAPS: /* Non-threadsafe */
ret = (long)dgram_pair_ctrl_set_caps(bio, (uint32_t)num);
break;
/* BIO_dgram_get_mtu */
case BIO_CTRL_DGRAM_GET_MTU: /* Non-threadsafe */
ret = (long)dgram_pair_ctrl_get_mtu(bio);
break;
/* BIO_dgram_set_mtu */
case BIO_CTRL_DGRAM_SET_MTU: /* Non-threadsafe */
ret = (long)dgram_pair_ctrl_set_mtu(bio, (uint32_t)num);
break;
/*
* BIO_eof: Returns whether this half of the BIO pair is empty of data to
* read.
*/
case BIO_CTRL_EOF: /* Non-threadsafe */
ret = (long)dgram_pair_ctrl_eof(bio);
break;
default:
ret = 0;
break;
}
return ret;
}
static long dgram_pair_ctrl(BIO *bio, int cmd, long num, void *ptr)
{
long ret = 1;
switch (cmd) {
/*
* BIO_make_bio_pair: this is usually used by BIO_new_dgram_pair, though it
* may be used manually after manually creating each half of a BIO pair
* using BIO_new. This only needs to be called on one of the BIOs.
*/
case BIO_C_MAKE_BIO_PAIR: /* Non-threadsafe */
ret = (long)dgram_pair_ctrl_make_bio_pair(bio, (BIO *)ptr);
break;
/*
* BIO_destroy_bio_pair: Manually disconnect two halves of a BIO pair so
* that they are no longer peers.
*/
case BIO_C_DESTROY_BIO_PAIR: /* Non-threadsafe */
dgram_pair_ctrl_destroy_bio_pair(bio);
break;
/* BIO_dgram_get_effective_caps */
case BIO_CTRL_DGRAM_GET_EFFECTIVE_CAPS: /* Non-threadsafe */
ret = (long)dgram_pair_ctrl_get_effective_caps(bio);
break;
default:
ret = dgram_mem_ctrl(bio, cmd, num, ptr);
break;
}
return ret;
}
int BIO_new_bio_dgram_pair(BIO **pbio1, size_t writebuf1,
BIO **pbio2, size_t writebuf2)
{
int ret = 0;
long r;
BIO *bio1 = NULL, *bio2 = NULL;
bio1 = BIO_new(BIO_s_dgram_pair());
if (bio1 == NULL)
goto err;
bio2 = BIO_new(BIO_s_dgram_pair());
if (bio2 == NULL)
goto err;
if (writebuf1 > 0) {
r = BIO_set_write_buf_size(bio1, writebuf1);
if (r == 0)
goto err;
}
if (writebuf2 > 0) {
r = BIO_set_write_buf_size(bio2, writebuf2);
if (r == 0)
goto err;
}
r = BIO_make_bio_pair(bio1, bio2);
if (r == 0)
goto err;
ret = 1;
err:
if (ret == 0) {
BIO_free(bio1);
bio1 = NULL;
BIO_free(bio2);
bio2 = NULL;
}
*pbio1 = bio1;
*pbio2 = bio2;
return ret;
}
/* Must hold peer write lock */
static size_t dgram_pair_read_inner(struct bio_dgram_pair_st *b, uint8_t *buf, size_t sz)
{
size_t total_read = 0;
/*
* We repeat pops from the ring buffer for as long as we have more
* application *buffer to fill until we fail. We may not be able to pop
* enough data to fill the buffer in one operation if the ring buffer wraps
* around, but there may still be more data available.
*/
while (sz > 0) {
uint8_t *src_buf = NULL;
size_t src_len = 0;
/*
* There are two BIO instances, each with a ringbuf. We read from the
* peer ringbuf and write to our own ringbuf.
*/
ring_buf_tail(&b->rbuf, &src_buf, &src_len);
if (src_len == 0)
break;
if (src_len > sz)
src_len = sz;
if (buf != NULL)
memcpy(buf, src_buf, src_len);
ring_buf_pop(&b->rbuf, src_len);
if (buf != NULL)
buf += src_len;
total_read += src_len;
sz -= src_len;
}
return total_read;
}
/*
* Must hold peer write lock. Returns number of bytes processed or negated BIO
* response code.
*/
static ossl_ssize_t dgram_pair_read_actual(BIO *bio, char *buf, size_t sz,
BIO_ADDR *local, BIO_ADDR *peer,
int is_multi)
{
size_t l, trunc = 0, saved_idx, saved_count;
struct bio_dgram_pair_st *b = bio->ptr, *readb;
struct dgram_hdr hdr;
if (!is_multi)
BIO_clear_retry_flags(bio);
if (!bio->init)
return -BIO_R_UNINITIALIZED;
if (!ossl_assert(b != NULL))
return -BIO_R_TRANSFER_ERROR;
if (is_dgram_pair(b))
readb = b->peer->ptr;
else
readb = b;
if (!ossl_assert(readb != NULL && readb->rbuf.start != NULL))
return -BIO_R_TRANSFER_ERROR;
if (sz > 0 && buf == NULL)
return -BIO_R_INVALID_ARGUMENT;
/* If the caller wants to know the local address, it must be enabled */
if (local != NULL && b->local_addr_enable == 0)
return -BIO_R_LOCAL_ADDR_NOT_AVAILABLE;
/* Read the header. */
saved_idx = readb->rbuf.idx[1];
saved_count = readb->rbuf.count;
l = dgram_pair_read_inner(readb, (uint8_t *)&hdr, sizeof(hdr));
if (l == 0) {
/* Buffer was empty. */
if (!is_multi)
BIO_set_retry_read(bio);
return -BIO_R_NON_FATAL;
}
if (!ossl_assert(l == sizeof(hdr)))
/*
* This should not be possible as headers (and their following payloads)
* should always be written atomically.
*/
return -BIO_R_BROKEN_PIPE;
if (sz > hdr.len) {
sz = hdr.len;
} else if (sz < hdr.len) {
/* Truncation is occurring. */
trunc = hdr.len - sz;
if (b->no_trunc) {
/* Restore original state. */
readb->rbuf.idx[1] = saved_idx;
readb->rbuf.count = saved_count;
return -BIO_R_NON_FATAL;
}
}
l = dgram_pair_read_inner(readb, (uint8_t *)buf, sz);
if (!ossl_assert(l == sz))
/* We were somehow not able to read the entire datagram. */
return -BIO_R_TRANSFER_ERROR;
/*
* If the datagram was truncated due to an inadequate buffer, discard the
* remainder.
*/
if (trunc > 0 && !ossl_assert(dgram_pair_read_inner(readb, NULL, trunc) == trunc))
/* We were somehow not able to read/skip the entire datagram. */
return -BIO_R_TRANSFER_ERROR;
if (local != NULL)
*local = hdr.dst_addr;
if (peer != NULL)
*peer = hdr.src_addr;
return (ossl_ssize_t)l;
}
/* Threadsafe */
static int dgram_pair_lock_both_write(struct bio_dgram_pair_st *a,
struct bio_dgram_pair_st *b)
{
struct bio_dgram_pair_st *x, *y;
x = (a->role == 1) ? a : b;
y = (a->role == 1) ? b : a;
if (!ossl_assert(a->role != b->role))
return 0;
if (!ossl_assert(a != b && x != y))
return 0;
if (CRYPTO_THREAD_write_lock(x->lock) == 0)
return 0;
if (CRYPTO_THREAD_write_lock(y->lock) == 0) {
CRYPTO_THREAD_unlock(x->lock);
return 0;
}
return 1;
}
static void dgram_pair_unlock_both(struct bio_dgram_pair_st *a,
struct bio_dgram_pair_st *b)
{
CRYPTO_THREAD_unlock(a->lock);
CRYPTO_THREAD_unlock(b->lock);
}
/* Threadsafe */
static int dgram_pair_read(BIO *bio, char *buf, int sz_)
{
int ret;
ossl_ssize_t l;
struct bio_dgram_pair_st *b = bio->ptr, *peerb;
if (sz_ < 0) {
ERR_raise(ERR_LIB_BIO, BIO_R_INVALID_ARGUMENT);
return -1;
}
if (b->peer == NULL) {
ERR_raise(ERR_LIB_BIO, BIO_R_BROKEN_PIPE);
return -1;
}
peerb = b->peer->ptr;
/*
* For BIO_read we have to acquire both locks because we touch the retry
* flags on the local bio. (This is avoided in the recvmmsg case as it does
* not touch the retry flags.)
*/
if (dgram_pair_lock_both_write(peerb, b) == 0) {
ERR_raise(ERR_LIB_BIO, ERR_R_UNABLE_TO_GET_WRITE_LOCK);
return -1;
}
l = dgram_pair_read_actual(bio, buf, (size_t)sz_, NULL, NULL, 0);
if (l < 0) {
if (l != -BIO_R_NON_FATAL)
ERR_raise(ERR_LIB_BIO, -l);
ret = -1;
} else {
ret = (int)l;
}
dgram_pair_unlock_both(peerb, b);
return ret;
}
/* Threadsafe */
static int dgram_pair_recvmmsg(BIO *bio, BIO_MSG *msg,
size_t stride, size_t num_msg,
uint64_t flags,
size_t *num_processed)
{
int ret;
ossl_ssize_t l;
BIO_MSG *m;
size_t i;
struct bio_dgram_pair_st *b = bio->ptr, *readb;
if (num_msg == 0) {
*num_processed = 0;
return 1;
}
if (!bio->init) {
ERR_raise(ERR_LIB_BIO, BIO_R_BROKEN_PIPE);
*num_processed = 0;
return 0;
}
if (is_dgram_pair(b))
readb = b->peer->ptr;
else
readb = b;
if (CRYPTO_THREAD_write_lock(readb->lock) == 0) {
ERR_raise(ERR_LIB_BIO, ERR_R_UNABLE_TO_GET_WRITE_LOCK);
*num_processed = 0;
return 0;
}
for (i = 0; i < num_msg; ++i) {
m = &BIO_MSG_N(msg, i);
l = dgram_pair_read_actual(bio, m->data, m->data_len,
m->local, m->peer, 1);
if (l < 0) {
*num_processed = i;
if (i > 0) {
ret = 1;
} else {
ERR_raise(ERR_LIB_BIO, -l);
ret = 0;
}
goto out;
}
m->data_len = l;
m->flags = 0;
}
*num_processed = i;
ret = 1;
out:
CRYPTO_THREAD_unlock(readb->lock);
return ret;
}
/* Threadsafe */
static int dgram_mem_read(BIO *bio, char *buf, int sz_)
{
int ret;
ossl_ssize_t l;
struct bio_dgram_pair_st *b = bio->ptr;
if (sz_ < 0) {
ERR_raise(ERR_LIB_BIO, BIO_R_INVALID_ARGUMENT);
return -1;
}
if (CRYPTO_THREAD_write_lock(b->lock) == 0) {
ERR_raise(ERR_LIB_BIO, ERR_R_UNABLE_TO_GET_WRITE_LOCK);
return -1;
}
l = dgram_pair_read_actual(bio, buf, (size_t)sz_, NULL, NULL, 0);
if (l < 0) {
if (l != -BIO_R_NON_FATAL)
ERR_raise(ERR_LIB_BIO, -l);
ret = -1;
} else {
ret = (int)l;
}
CRYPTO_THREAD_unlock(b->lock);
return ret;
}
/*
* Calculate the array growth based on the target size.
*
* The growth factor is a rational number and is defined by a numerator
* and a denominator. According to Andrew Koenig in his paper "Why Are
* Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
* than the golden ratio (1.618...).
*
* We use an expansion factor of 8 / 5 = 1.6
*/
static const size_t max_rbuf_size = SIZE_MAX / 2; /* unlimited in practice */
static ossl_inline size_t compute_rbuf_growth(size_t target, size_t current)
{
int err = 0;
while (current < target) {
if (current >= max_rbuf_size)
return 0;
current = safe_muldiv_size_t(current, 8, 5, &err);
if (err)
return 0;
if (current >= max_rbuf_size)
current = max_rbuf_size;
}
return current;
}
/* Must hold local write lock */
static size_t dgram_pair_write_inner(struct bio_dgram_pair_st *b,
const uint8_t *buf, size_t sz)
{
size_t total_written = 0;
/*
* We repeat pushes to the ring buffer for as long as we have data until we
* fail. We may not be able to push in one operation if the ring buffer
* wraps around, but there may still be more room for data.
*/
while (sz > 0) {
size_t dst_len;
uint8_t *dst_buf;
/*
* There are two BIO instances, each with a ringbuf. We write to our own
* ringbuf and read from the peer ringbuf.
*/
ring_buf_head(&b->rbuf, &dst_buf, &dst_len);
if (dst_len == 0) {
size_t new_len;
if (!b->grows_on_write) /* resize only if size not set explicitly */
break;
/* increase the size */
new_len = compute_rbuf_growth(b->req_buf_len + sz, b->req_buf_len);
if (new_len == 0 || !ring_buf_resize(&b->rbuf, new_len))
break;
b->req_buf_len = new_len;
}
if (dst_len > sz)
dst_len = sz;
memcpy(dst_buf, buf, dst_len);
ring_buf_push(&b->rbuf, dst_len);
buf += dst_len;
sz -= dst_len;
total_written += dst_len;
}
return total_written;
}
/*
* Must hold local write lock. Returns number of bytes processed or negated BIO
* response code.
*/
static ossl_ssize_t dgram_pair_write_actual(BIO *bio, const char *buf, size_t sz,
const BIO_ADDR *local, const BIO_ADDR *peer,
int is_multi)
{
static const BIO_ADDR zero_addr;
size_t saved_idx, saved_count;
struct bio_dgram_pair_st *b = bio->ptr, *readb;
struct dgram_hdr hdr = {0};
if (!is_multi)
BIO_clear_retry_flags(bio);
if (!bio->init)
return -BIO_R_UNINITIALIZED;
if (!ossl_assert(b != NULL && b->rbuf.start != NULL))
return -BIO_R_TRANSFER_ERROR;
if (sz > 0 && buf == NULL)
return -BIO_R_INVALID_ARGUMENT;
if (local != NULL && b->local_addr_enable == 0)
return -BIO_R_LOCAL_ADDR_NOT_AVAILABLE;
if (is_dgram_pair(b))
readb = b->peer->ptr;
else
readb = b;
if (peer != NULL && (readb->cap & BIO_DGRAM_CAP_HANDLES_DST_ADDR) == 0)
return -BIO_R_PEER_ADDR_NOT_AVAILABLE;
hdr.len = sz;
hdr.dst_addr = (peer != NULL ? *peer : zero_addr);
hdr.src_addr = (local != NULL ? *local : zero_addr);
saved_idx = b->rbuf.idx[0];
saved_count = b->rbuf.count;
if (dgram_pair_write_inner(b, (const uint8_t *)&hdr, sizeof(hdr)) != sizeof(hdr)
|| dgram_pair_write_inner(b, (const uint8_t *)buf, sz) != sz) {
/*
* We were not able to push the header and the entirety of the payload
* onto the ring buffer, so abort and roll back the ring buffer state.
*/
b->rbuf.idx[0] = saved_idx;
b->rbuf.count = saved_count;
if (!is_multi)
BIO_set_retry_write(bio);
return -BIO_R_NON_FATAL;
}
return sz;
}
/* Threadsafe */
static int dgram_pair_write(BIO *bio, const char *buf, int sz_)
{
int ret;
ossl_ssize_t l;
struct bio_dgram_pair_st *b = bio->ptr;
if (sz_ < 0) {
ERR_raise(ERR_LIB_BIO, BIO_R_INVALID_ARGUMENT);
return -1;
}
if (CRYPTO_THREAD_write_lock(b->lock) == 0) {
ERR_raise(ERR_LIB_BIO, ERR_R_UNABLE_TO_GET_WRITE_LOCK);
return -1;
}
l = dgram_pair_write_actual(bio, buf, (size_t)sz_, NULL, NULL, 0);
if (l < 0) {
ERR_raise(ERR_LIB_BIO, -l);
ret = -1;
} else {
ret = (int)l;
}
CRYPTO_THREAD_unlock(b->lock);
return ret;
}
/* Threadsafe */
static int dgram_pair_sendmmsg(BIO *bio, BIO_MSG *msg,
size_t stride, size_t num_msg,
uint64_t flags, size_t *num_processed)
{
ossl_ssize_t ret, l;
BIO_MSG *m;
size_t i;
struct bio_dgram_pair_st *b = bio->ptr;
if (num_msg == 0) {
*num_processed = 0;
return 1;
}
if (CRYPTO_THREAD_write_lock(b->lock) == 0) {
ERR_raise(ERR_LIB_BIO, ERR_R_UNABLE_TO_GET_WRITE_LOCK);
*num_processed = 0;
return 0;
}
for (i = 0; i < num_msg; ++i) {
m = &BIO_MSG_N(msg, i);
l = dgram_pair_write_actual(bio, m->data, m->data_len,
m->local, m->peer, 1);
if (l < 0) {
*num_processed = i;
if (i > 0) {
ret = 1;
} else {
ERR_raise(ERR_LIB_BIO, -l);
ret = 0;
}
goto out;
}
m->flags = 0;
}
*num_processed = i;
ret = 1;
out:
CRYPTO_THREAD_unlock(b->lock);
return ret;
}
#endif