/* * Copyright 2019-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal/asn1.h" /* For TLS1_3_VERSION */ #include #include "internal/nelem.h" #include "internal/refcount.h" /* error codes */ /* xorprovider error codes */ #define XORPROV_R_INVALID_DIGEST 1 #define XORPROV_R_INVALID_SIZE 2 #define XORPROV_R_INVALID_KEY 3 #define XORPROV_R_UNSUPPORTED 4 #define XORPROV_R_MISSING_OID 5 #define XORPROV_R_OBJ_CREATE_ERR 6 #define XORPROV_R_INVALID_ENCODING 7 #define XORPROV_R_SIGN_ERROR 8 #define XORPROV_R_LIB_CREATE_ERR 9 #define XORPROV_R_NO_PRIVATE_KEY 10 #define XORPROV_R_BUFFER_LENGTH_WRONG 11 #define XORPROV_R_SIGNING_FAILED 12 #define XORPROV_R_WRONG_PARAMETERS 13 #define XORPROV_R_VERIFY_ERROR 14 #define XORPROV_R_EVPINFO_MISSING 15 static OSSL_FUNC_keymgmt_import_fn xor_import; static OSSL_FUNC_keymgmt_import_types_fn xor_import_types; static OSSL_FUNC_keymgmt_import_types_ex_fn xor_import_types_ex; static OSSL_FUNC_keymgmt_export_fn xor_export; static OSSL_FUNC_keymgmt_export_types_fn xor_export_types; static OSSL_FUNC_keymgmt_export_types_ex_fn xor_export_types_ex; int tls_provider_init(const OSSL_CORE_HANDLE *handle, const OSSL_DISPATCH *in, const OSSL_DISPATCH **out, void **provctx); #define XOR_KEY_SIZE 32 /* * Top secret. This algorithm only works if no one knows what this number is. * Please don't tell anyone what it is. * * This algorithm is for testing only - don't really use it! */ static const unsigned char private_constant[XOR_KEY_SIZE] = { 0xd3, 0x6b, 0x54, 0xec, 0x5b, 0xac, 0x89, 0x96, 0x8c, 0x2c, 0x66, 0xa5, 0x67, 0x0d, 0xe3, 0xdd, 0x43, 0x69, 0xbc, 0x83, 0x3d, 0x60, 0xc7, 0xb8, 0x2b, 0x1c, 0x5a, 0xfd, 0xb5, 0xcd, 0xd0, 0xf8 }; typedef struct xorkey_st { unsigned char privkey[XOR_KEY_SIZE]; unsigned char pubkey[XOR_KEY_SIZE]; int hasprivkey; int haspubkey; char *tls_name; CRYPTO_REF_COUNT references; } XORKEY; /* Key Management for the dummy XOR KEX, KEM and signature algorithms */ static OSSL_FUNC_keymgmt_new_fn xor_newkey; static OSSL_FUNC_keymgmt_free_fn xor_freekey; static OSSL_FUNC_keymgmt_has_fn xor_has; static OSSL_FUNC_keymgmt_dup_fn xor_dup; static OSSL_FUNC_keymgmt_gen_init_fn xor_gen_init; static OSSL_FUNC_keymgmt_gen_set_params_fn xor_gen_set_params; static OSSL_FUNC_keymgmt_gen_settable_params_fn xor_gen_settable_params; static OSSL_FUNC_keymgmt_gen_fn xor_gen; static OSSL_FUNC_keymgmt_gen_cleanup_fn xor_gen_cleanup; static OSSL_FUNC_keymgmt_load_fn xor_load; static OSSL_FUNC_keymgmt_get_params_fn xor_get_params; static OSSL_FUNC_keymgmt_gettable_params_fn xor_gettable_params; static OSSL_FUNC_keymgmt_set_params_fn xor_set_params; static OSSL_FUNC_keymgmt_settable_params_fn xor_settable_params; /* * Dummy "XOR" Key Exchange algorithm. We just xor the private and public keys * together. Don't use this! */ static OSSL_FUNC_keyexch_newctx_fn xor_newkemkexctx; static OSSL_FUNC_keyexch_init_fn xor_init; static OSSL_FUNC_keyexch_set_peer_fn xor_set_peer; static OSSL_FUNC_keyexch_derive_fn xor_derive; static OSSL_FUNC_keyexch_freectx_fn xor_freectx; static OSSL_FUNC_keyexch_dupctx_fn xor_dupctx; /* * Dummy "XOR" Key Encapsulation Method. We just build a KEM over the xor KEX. * Don't use this! */ static OSSL_FUNC_kem_newctx_fn xor_newkemkexctx; static OSSL_FUNC_kem_freectx_fn xor_freectx; static OSSL_FUNC_kem_dupctx_fn xor_dupctx; static OSSL_FUNC_kem_encapsulate_init_fn xor_init; static OSSL_FUNC_kem_encapsulate_fn xor_encapsulate; static OSSL_FUNC_kem_decapsulate_init_fn xor_init; static OSSL_FUNC_kem_decapsulate_fn xor_decapsulate; /* * Common key management table access functions */ static OSSL_FUNC_keymgmt_new_fn * xor_prov_get_keymgmt_new(const OSSL_DISPATCH *fns) { /* Pilfer the keymgmt dispatch table */ for (; fns->function_id != 0; fns++) if (fns->function_id == OSSL_FUNC_KEYMGMT_NEW) return OSSL_FUNC_keymgmt_new(fns); return NULL; } static OSSL_FUNC_keymgmt_free_fn * xor_prov_get_keymgmt_free(const OSSL_DISPATCH *fns) { /* Pilfer the keymgmt dispatch table */ for (; fns->function_id != 0; fns++) if (fns->function_id == OSSL_FUNC_KEYMGMT_FREE) return OSSL_FUNC_keymgmt_free(fns); return NULL; } static OSSL_FUNC_keymgmt_import_fn * xor_prov_get_keymgmt_import(const OSSL_DISPATCH *fns) { /* Pilfer the keymgmt dispatch table */ for (; fns->function_id != 0; fns++) if (fns->function_id == OSSL_FUNC_KEYMGMT_IMPORT) return OSSL_FUNC_keymgmt_import(fns); return NULL; } static OSSL_FUNC_keymgmt_export_fn * xor_prov_get_keymgmt_export(const OSSL_DISPATCH *fns) { /* Pilfer the keymgmt dispatch table */ for (; fns->function_id != 0; fns++) if (fns->function_id == OSSL_FUNC_KEYMGMT_EXPORT) return OSSL_FUNC_keymgmt_export(fns); return NULL; } static void *xor_prov_import_key(const OSSL_DISPATCH *fns, void *provctx, int selection, const OSSL_PARAM params[]) { OSSL_FUNC_keymgmt_new_fn *kmgmt_new = xor_prov_get_keymgmt_new(fns); OSSL_FUNC_keymgmt_free_fn *kmgmt_free = xor_prov_get_keymgmt_free(fns); OSSL_FUNC_keymgmt_import_fn *kmgmt_import = xor_prov_get_keymgmt_import(fns); void *key = NULL; if (kmgmt_new != NULL && kmgmt_import != NULL && kmgmt_free != NULL) { if ((key = kmgmt_new(provctx)) == NULL || !kmgmt_import(key, selection, params)) { kmgmt_free(key); key = NULL; } } return key; } static void xor_prov_free_key(const OSSL_DISPATCH *fns, void *key) { OSSL_FUNC_keymgmt_free_fn *kmgmt_free = xor_prov_get_keymgmt_free(fns); if (kmgmt_free != NULL) kmgmt_free(key); } /* * We define 2 dummy TLS groups called "xorgroup" and "xorkemgroup" for test * purposes */ struct tls_group_st { unsigned int group_id; /* for "tls-group-id", see provider-base(7) */ unsigned int secbits; unsigned int mintls; unsigned int maxtls; unsigned int mindtls; unsigned int maxdtls; unsigned int is_kem; /* boolean */ }; #define XORGROUP_NAME "xorgroup" #define XORGROUP_NAME_INTERNAL "xorgroup-int" static struct tls_group_st xor_group = { 0, /* group_id, set by randomize_tls_alg_id() */ 128, /* secbits */ TLS1_3_VERSION, /* mintls */ 0, /* maxtls */ -1, /* mindtls */ -1, /* maxdtls */ 0 /* is_kem */ }; #define XORKEMGROUP_NAME "xorkemgroup" #define XORKEMGROUP_NAME_INTERNAL "xorkemgroup-int" static struct tls_group_st xor_kemgroup = { 0, /* group_id, set by randomize_tls_alg_id() */ 128, /* secbits */ TLS1_3_VERSION, /* mintls */ 0, /* maxtls */ -1, /* mindtls */ -1, /* maxdtls */ 1 /* is_kem */ }; #define ALGORITHM "XOR" static const OSSL_PARAM xor_group_params[] = { OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME, XORGROUP_NAME, sizeof(XORGROUP_NAME)), OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL, XORGROUP_NAME_INTERNAL, sizeof(XORGROUP_NAME_INTERNAL)), OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_ALG, ALGORITHM, sizeof(ALGORITHM)), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_ID, &xor_group.group_id), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS, &xor_group.secbits), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_TLS, &xor_group.mintls), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_TLS, &xor_group.maxtls), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS, &xor_group.mindtls), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS, &xor_group.maxdtls), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_IS_KEM, &xor_group.is_kem), OSSL_PARAM_END }; static const OSSL_PARAM xor_kemgroup_params[] = { OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME, XORKEMGROUP_NAME, sizeof(XORKEMGROUP_NAME)), OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL, XORKEMGROUP_NAME_INTERNAL, sizeof(XORKEMGROUP_NAME_INTERNAL)), OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_ALG, ALGORITHM, sizeof(ALGORITHM)), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_ID, &xor_kemgroup.group_id), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS, &xor_kemgroup.secbits), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_TLS, &xor_kemgroup.mintls), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_TLS, &xor_kemgroup.maxtls), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS, &xor_kemgroup.mindtls), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS, &xor_kemgroup.maxdtls), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_IS_KEM, &xor_kemgroup.is_kem), OSSL_PARAM_END }; #define NUM_DUMMY_GROUPS 50 static char *dummy_group_names[NUM_DUMMY_GROUPS]; /* * We define a dummy TLS sigalg called for test purposes */ struct tls_sigalg_st { unsigned int code_point; /* for "tls-sigalg-alg", see provider-base(7) */ unsigned int secbits; unsigned int mintls; unsigned int maxtls; }; #define XORSIGALG_NAME "xorhmacsig" #define XORSIGALG_OID "1.3.6.1.4.1.16604.998888.1" #define XORSIGALG_HASH_NAME "xorhmacsha2sig" #define XORSIGALG_HASH "SHA256" #define XORSIGALG_HASH_OID "1.3.6.1.4.1.16604.998888.2" #define XORSIGALG12_NAME "xorhmacsig12" #define XORSIGALG12_OID "1.3.6.1.4.1.16604.998888.3" static struct tls_sigalg_st xor_sigalg = { 0, /* alg id, set by randomize_tls_alg_id() */ 128, /* secbits */ TLS1_3_VERSION, /* mintls */ 0, /* maxtls */ }; static struct tls_sigalg_st xor_sigalg_hash = { 0, /* alg id, set by randomize_tls_alg_id() */ 128, /* secbits */ TLS1_3_VERSION, /* mintls */ 0, /* maxtls */ }; static struct tls_sigalg_st xor_sigalg12 = { 0, /* alg id, set by randomize_tls_alg_id() */ 128, /* secbits */ TLS1_2_VERSION, /* mintls */ TLS1_2_VERSION, /* maxtls */ }; static const OSSL_PARAM xor_sig_nohash_params[] = { OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME, XORSIGALG_NAME, sizeof(XORSIGALG_NAME)), OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_NAME, XORSIGALG_NAME, sizeof(XORSIGALG_NAME)), OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_OID, XORSIGALG_OID, sizeof(XORSIGALG_OID)), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT, &xor_sigalg.code_point), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS, &xor_sigalg.secbits), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS, &xor_sigalg.mintls), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS, &xor_sigalg.maxtls), OSSL_PARAM_END }; static const OSSL_PARAM xor_sig_hash_params[] = { OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME, XORSIGALG_HASH_NAME, sizeof(XORSIGALG_HASH_NAME)), OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_NAME, XORSIGALG_HASH_NAME, sizeof(XORSIGALG_HASH_NAME)), OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME, XORSIGALG_HASH, sizeof(XORSIGALG_HASH)), OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_OID, XORSIGALG_HASH_OID, sizeof(XORSIGALG_HASH_OID)), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT, &xor_sigalg_hash.code_point), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS, &xor_sigalg_hash.secbits), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS, &xor_sigalg_hash.mintls), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS, &xor_sigalg_hash.maxtls), OSSL_PARAM_END }; static const OSSL_PARAM xor_sig_12_params[] = { OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME, XORSIGALG12_NAME, sizeof(XORSIGALG12_NAME)), OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_NAME, XORSIGALG12_NAME, sizeof(XORSIGALG12_NAME)), OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_OID, XORSIGALG12_OID, sizeof(XORSIGALG12_OID)), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT, &xor_sigalg12.code_point), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS, &xor_sigalg12.secbits), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS, &xor_sigalg12.mintls), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS, &xor_sigalg12.maxtls), OSSL_PARAM_END }; static int tls_prov_get_capabilities(void *provctx, const char *capability, OSSL_CALLBACK *cb, void *arg) { int ret = 0; int i; const char *dummy_base = "dummy"; const size_t dummy_name_max_size = strlen(dummy_base) + 3; if (strcmp(capability, "TLS-GROUP") == 0) { /* Register our 2 groups */ ret = cb(xor_group_params, arg); ret &= cb(xor_kemgroup_params, arg); /* * Now register some dummy groups > GROUPLIST_INCREMENT (== 40) as defined * in ssl/t1_lib.c, to make sure we exercise the code paths for registering * large numbers of groups. */ for (i = 0; i < NUM_DUMMY_GROUPS; i++) { OSSL_PARAM dummygroup[OSSL_NELEM(xor_group_params)]; memcpy(dummygroup, xor_group_params, sizeof(xor_group_params)); /* Give the dummy group a unique name */ if (dummy_group_names[i] == NULL) { dummy_group_names[i] = OPENSSL_zalloc(dummy_name_max_size); if (dummy_group_names[i] == NULL) return 0; BIO_snprintf(dummy_group_names[i], dummy_name_max_size, "%s%d", dummy_base, i); } dummygroup[0].data = dummy_group_names[i]; dummygroup[0].data_size = strlen(dummy_group_names[i]) + 1; ret &= cb(dummygroup, arg); } } if (strcmp(capability, "TLS-SIGALG") == 0) { ret = cb(xor_sig_nohash_params, arg); ret &= cb(xor_sig_hash_params, arg); ret &= cb(xor_sig_12_params, arg); } return ret; } typedef struct { OSSL_LIB_CTX *libctx; } PROV_XOR_CTX; static PROV_XOR_CTX *xor_newprovctx(OSSL_LIB_CTX *libctx) { PROV_XOR_CTX* prov_ctx = OPENSSL_malloc(sizeof(PROV_XOR_CTX)); if (prov_ctx == NULL) return NULL; if (libctx == NULL) { OPENSSL_free(prov_ctx); return NULL; } prov_ctx->libctx = libctx; return prov_ctx; } #define PROV_XOR_LIBCTX_OF(provctx) (((PROV_XOR_CTX *)provctx)->libctx) /* * Dummy "XOR" Key Exchange and signature algorithm. We just xor the * private and public keys together. Don't use this! */ typedef struct { XORKEY *key; XORKEY *peerkey; void *provctx; } PROV_XORKEMKEX_CTX; static void *xor_newkemkexctx(void *provctx) { PROV_XORKEMKEX_CTX *pxorctx = OPENSSL_zalloc(sizeof(PROV_XORKEMKEX_CTX)); if (pxorctx == NULL) return NULL; pxorctx->provctx = provctx; return pxorctx; } static int xor_init(void *vpxorctx, void *vkey, ossl_unused const OSSL_PARAM params[]) { PROV_XORKEMKEX_CTX *pxorctx = (PROV_XORKEMKEX_CTX *)vpxorctx; if (pxorctx == NULL || vkey == NULL) return 0; pxorctx->key = vkey; return 1; } static int xor_set_peer(void *vpxorctx, void *vpeerkey) { PROV_XORKEMKEX_CTX *pxorctx = (PROV_XORKEMKEX_CTX *)vpxorctx; if (pxorctx == NULL || vpeerkey == NULL) return 0; pxorctx->peerkey = vpeerkey; return 1; } static int xor_derive(void *vpxorctx, unsigned char *secret, size_t *secretlen, size_t outlen) { PROV_XORKEMKEX_CTX *pxorctx = (PROV_XORKEMKEX_CTX *)vpxorctx; int i; if (pxorctx->key == NULL || pxorctx->peerkey == NULL) return 0; *secretlen = XOR_KEY_SIZE; if (secret == NULL) return 1; if (outlen < XOR_KEY_SIZE) return 0; for (i = 0; i < XOR_KEY_SIZE; i++) secret[i] = pxorctx->key->privkey[i] ^ pxorctx->peerkey->pubkey[i]; return 1; } static void xor_freectx(void *pxorctx) { OPENSSL_free(pxorctx); } static void *xor_dupctx(void *vpxorctx) { PROV_XORKEMKEX_CTX *srcctx = (PROV_XORKEMKEX_CTX *)vpxorctx; PROV_XORKEMKEX_CTX *dstctx; dstctx = OPENSSL_zalloc(sizeof(*srcctx)); if (dstctx == NULL) return NULL; *dstctx = *srcctx; return dstctx; } static const OSSL_DISPATCH xor_keyexch_functions[] = { { OSSL_FUNC_KEYEXCH_NEWCTX, (void (*)(void))xor_newkemkexctx }, { OSSL_FUNC_KEYEXCH_INIT, (void (*)(void))xor_init }, { OSSL_FUNC_KEYEXCH_DERIVE, (void (*)(void))xor_derive }, { OSSL_FUNC_KEYEXCH_SET_PEER, (void (*)(void))xor_set_peer }, { OSSL_FUNC_KEYEXCH_FREECTX, (void (*)(void))xor_freectx }, { OSSL_FUNC_KEYEXCH_DUPCTX, (void (*)(void))xor_dupctx }, OSSL_DISPATCH_END }; static const OSSL_ALGORITHM tls_prov_keyexch[] = { /* * Obviously this is not FIPS approved, but in order to test in conjunction * with the FIPS provider we pretend that it is. */ { "XOR", "provider=tls-provider,fips=yes", xor_keyexch_functions }, { NULL, NULL, NULL } }; /* * Dummy "XOR" Key Encapsulation Method. We just build a KEM over the xor KEX. * Don't use this! */ static int xor_encapsulate(void *vpxorctx, unsigned char *ct, size_t *ctlen, unsigned char *ss, size_t *sslen) { /* * We are building this around a KEX: * * 1. we generate ephemeral keypair * 2. we encode our ephemeral pubkey as the outgoing ct * 3. we derive using our ephemeral privkey in combination with the peer * pubkey from the ctx; the result is our ss. */ int rv = 0; void *genctx = NULL, *derivectx = NULL; XORKEY *ourkey = NULL; PROV_XORKEMKEX_CTX *pxorctx = vpxorctx; if (ct == NULL || ss == NULL) { /* Just return sizes */ if (ctlen == NULL && sslen == NULL) return 0; if (ctlen != NULL) *ctlen = XOR_KEY_SIZE; if (sslen != NULL) *sslen = XOR_KEY_SIZE; return 1; } /* 1. Generate keypair */ genctx = xor_gen_init(pxorctx->provctx, OSSL_KEYMGMT_SELECT_KEYPAIR, NULL); if (genctx == NULL) goto end; ourkey = xor_gen(genctx, NULL, NULL); if (ourkey == NULL) goto end; /* 2. Encode ephemeral pubkey as ct */ memcpy(ct, ourkey->pubkey, XOR_KEY_SIZE); *ctlen = XOR_KEY_SIZE; /* 3. Derive ss via KEX */ derivectx = xor_newkemkexctx(pxorctx->provctx); if (derivectx == NULL || !xor_init(derivectx, ourkey, NULL) || !xor_set_peer(derivectx, pxorctx->key) || !xor_derive(derivectx, ss, sslen, XOR_KEY_SIZE)) goto end; rv = 1; end: xor_gen_cleanup(genctx); xor_freekey(ourkey); xor_freectx(derivectx); return rv; } static int xor_decapsulate(void *vpxorctx, unsigned char *ss, size_t *sslen, const unsigned char *ct, size_t ctlen) { /* * We are building this around a KEX: * * - ct is our peer's pubkey * - decapsulate is just derive. */ int rv = 0; void *derivectx = NULL; XORKEY *peerkey = NULL; PROV_XORKEMKEX_CTX *pxorctx = vpxorctx; if (ss == NULL) { /* Just return size */ if (sslen == NULL) return 0; *sslen = XOR_KEY_SIZE; return 1; } if (ctlen != XOR_KEY_SIZE) return 0; peerkey = xor_newkey(pxorctx->provctx); if (peerkey == NULL) goto end; memcpy(peerkey->pubkey, ct, XOR_KEY_SIZE); /* Derive ss via KEX */ derivectx = xor_newkemkexctx(pxorctx->provctx); if (derivectx == NULL || !xor_init(derivectx, pxorctx->key, NULL) || !xor_set_peer(derivectx, peerkey) || !xor_derive(derivectx, ss, sslen, XOR_KEY_SIZE)) goto end; rv = 1; end: xor_freekey(peerkey); xor_freectx(derivectx); return rv; } static const OSSL_DISPATCH xor_kem_functions[] = { { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))xor_newkemkexctx }, { OSSL_FUNC_KEM_FREECTX, (void (*)(void))xor_freectx }, { OSSL_FUNC_KEM_DUPCTX, (void (*)(void))xor_dupctx }, { OSSL_FUNC_KEM_ENCAPSULATE_INIT, (void (*)(void))xor_init }, { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))xor_encapsulate }, { OSSL_FUNC_KEM_DECAPSULATE_INIT, (void (*)(void))xor_init }, { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))xor_decapsulate }, OSSL_DISPATCH_END }; static const OSSL_ALGORITHM tls_prov_kem[] = { /* * Obviously this is not FIPS approved, but in order to test in conjunction * with the FIPS provider we pretend that it is. */ { "XOR", "provider=tls-provider,fips=yes", xor_kem_functions }, { NULL, NULL, NULL } }; /* Key Management for the dummy XOR key exchange algorithm */ static void *xor_newkey(void *provctx) { XORKEY *ret = OPENSSL_zalloc(sizeof(XORKEY)); if (ret == NULL) return NULL; if (!CRYPTO_NEW_REF(&ret->references, 1)) { OPENSSL_free(ret); return NULL; } return ret; } static void xor_freekey(void *keydata) { XORKEY* key = (XORKEY *)keydata; int refcnt; if (key == NULL) return; if (CRYPTO_DOWN_REF(&key->references, &refcnt) <= 0) return; if (refcnt > 0) return; assert(refcnt == 0); if (key != NULL) { OPENSSL_free(key->tls_name); key->tls_name = NULL; } CRYPTO_FREE_REF(&key->references); OPENSSL_free(key); } static int xor_key_up_ref(XORKEY *key) { int refcnt; if (CRYPTO_UP_REF(&key->references, &refcnt) <= 0) return 0; assert(refcnt > 1); return (refcnt > 1); } static int xor_has(const void *vkey, int selection) { const XORKEY *key = vkey; int ok = 0; if (key != NULL) { ok = 1; if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) ok = ok && key->haspubkey; if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) ok = ok && key->hasprivkey; } return ok; } static void *xor_dup(const void *vfromkey, int selection) { XORKEY *tokey = xor_newkey(NULL); const XORKEY *fromkey = vfromkey; int ok = 0; if (tokey != NULL && fromkey != NULL) { ok = 1; if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) { if (fromkey->haspubkey) { memcpy(tokey->pubkey, fromkey->pubkey, XOR_KEY_SIZE); tokey->haspubkey = 1; } else { tokey->haspubkey = 0; } } if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) { if (fromkey->hasprivkey) { memcpy(tokey->privkey, fromkey->privkey, XOR_KEY_SIZE); tokey->hasprivkey = 1; } else { tokey->hasprivkey = 0; } } if (fromkey->tls_name != NULL) tokey->tls_name = OPENSSL_strdup(fromkey->tls_name); } if (!ok) { xor_freekey(tokey); tokey = NULL; } return tokey; } static ossl_inline int xor_get_params(void *vkey, OSSL_PARAM params[]) { XORKEY *key = vkey; OSSL_PARAM *p; if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_BITS)) != NULL && !OSSL_PARAM_set_int(p, XOR_KEY_SIZE)) return 0; if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_SECURITY_BITS)) != NULL && !OSSL_PARAM_set_int(p, xor_group.secbits)) return 0; if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY)) != NULL) { if (p->data_type != OSSL_PARAM_OCTET_STRING) return 0; p->return_size = XOR_KEY_SIZE; if (p->data != NULL && p->data_size >= XOR_KEY_SIZE) memcpy(p->data, key->pubkey, XOR_KEY_SIZE); } return 1; } static const OSSL_PARAM xor_params[] = { OSSL_PARAM_int(OSSL_PKEY_PARAM_BITS, NULL), OSSL_PARAM_int(OSSL_PKEY_PARAM_SECURITY_BITS, NULL), OSSL_PARAM_octet_string(OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY, NULL, 0), OSSL_PARAM_END }; static const OSSL_PARAM *xor_gettable_params(void *provctx) { return xor_params; } static int xor_set_params(void *vkey, const OSSL_PARAM params[]) { XORKEY *key = vkey; const OSSL_PARAM *p; p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY); if (p != NULL) { if (p->data_type != OSSL_PARAM_OCTET_STRING || p->data_size != XOR_KEY_SIZE) return 0; memcpy(key->pubkey, p->data, XOR_KEY_SIZE); key->haspubkey = 1; } return 1; } static const OSSL_PARAM xor_known_settable_params[] = { OSSL_PARAM_octet_string(OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY, NULL, 0), OSSL_PARAM_END }; static void *xor_load(const void *reference, size_t reference_sz) { XORKEY *key = NULL; if (reference_sz == sizeof(key)) { /* The contents of the reference is the address to our object */ key = *(XORKEY **)reference; /* We grabbed, so we detach it */ *(XORKEY **)reference = NULL; return key; } return NULL; } /* check one key is the "XOR complement" of the other */ static int xor_recreate(const unsigned char *kd1, const unsigned char *kd2) { int i; for (i = 0; i < XOR_KEY_SIZE; i++) { if ((kd1[i] & 0xff) != ((kd2[i] ^ private_constant[i]) & 0xff)) return 0; } return 1; } static int xor_match(const void *keydata1, const void *keydata2, int selection) { const XORKEY *key1 = keydata1; const XORKEY *key2 = keydata2; int ok = 1; if (key1->tls_name != NULL && key2->tls_name != NULL) ok = ok & (strcmp(key1->tls_name, key2->tls_name) == 0); if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) { if (key1->hasprivkey) { if (key2->hasprivkey) ok = ok & (CRYPTO_memcmp(key1->privkey, key2->privkey, XOR_KEY_SIZE) == 0); else ok = ok & xor_recreate(key1->privkey, key2->pubkey); } else { if (key2->hasprivkey) ok = ok & xor_recreate(key2->privkey, key1->pubkey); else ok = 0; } } if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) { if (key1->haspubkey) { if (key2->haspubkey) ok = ok & (CRYPTO_memcmp(key1->pubkey, key2->pubkey, XOR_KEY_SIZE) == 0); else ok = ok & xor_recreate(key1->pubkey, key2->privkey); } else { if (key2->haspubkey) ok = ok & xor_recreate(key2->pubkey, key1->privkey); else ok = 0; } } return ok; } static const OSSL_PARAM *xor_settable_params(void *provctx) { return xor_known_settable_params; } struct xor_gen_ctx { int selection; OSSL_LIB_CTX *libctx; }; static void *xor_gen_init(void *provctx, int selection, const OSSL_PARAM params[]) { struct xor_gen_ctx *gctx = NULL; if ((selection & (OSSL_KEYMGMT_SELECT_KEYPAIR | OSSL_KEYMGMT_SELECT_DOMAIN_PARAMETERS)) == 0) return NULL; if ((gctx = OPENSSL_zalloc(sizeof(*gctx))) != NULL) gctx->selection = selection; gctx->libctx = PROV_XOR_LIBCTX_OF(provctx); if (!xor_gen_set_params(gctx, params)) { OPENSSL_free(gctx); return NULL; } return gctx; } static int xor_gen_set_params(void *genctx, const OSSL_PARAM params[]) { struct xor_gen_ctx *gctx = genctx; const OSSL_PARAM *p; if (gctx == NULL) return 0; p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_GROUP_NAME); if (p != NULL) { if (p->data_type != OSSL_PARAM_UTF8_STRING || (strcmp(p->data, XORGROUP_NAME_INTERNAL) != 0 && strcmp(p->data, XORKEMGROUP_NAME_INTERNAL) != 0)) return 0; } return 1; } static const OSSL_PARAM *xor_gen_settable_params(ossl_unused void *genctx, ossl_unused void *provctx) { static OSSL_PARAM settable[] = { OSSL_PARAM_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME, NULL, 0), OSSL_PARAM_END }; return settable; } static void *xor_gen(void *genctx, OSSL_CALLBACK *osslcb, void *cbarg) { struct xor_gen_ctx *gctx = genctx; XORKEY *key = xor_newkey(NULL); size_t i; if (key == NULL) return NULL; if ((gctx->selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) { if (RAND_bytes_ex(gctx->libctx, key->privkey, XOR_KEY_SIZE, 0) <= 0) { OPENSSL_free(key); return NULL; } for (i = 0; i < XOR_KEY_SIZE; i++) key->pubkey[i] = key->privkey[i] ^ private_constant[i]; key->hasprivkey = 1; key->haspubkey = 1; } return key; } /* IMPORT + EXPORT */ static int xor_import(void *vkey, int select, const OSSL_PARAM params[]) { XORKEY *key = vkey; const OSSL_PARAM *param_priv_key, *param_pub_key; unsigned char privkey[XOR_KEY_SIZE]; unsigned char pubkey[XOR_KEY_SIZE]; void *pprivkey = privkey, *ppubkey = pubkey; size_t priv_len = 0, pub_len = 0; int res = 0; if (key == NULL || (select & OSSL_KEYMGMT_SELECT_KEYPAIR) == 0) return 0; memset(privkey, 0, sizeof(privkey)); memset(pubkey, 0, sizeof(pubkey)); param_priv_key = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_PRIV_KEY); param_pub_key = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_PUB_KEY); if ((param_priv_key != NULL && !OSSL_PARAM_get_octet_string(param_priv_key, &pprivkey, sizeof(privkey), &priv_len)) || (param_pub_key != NULL && !OSSL_PARAM_get_octet_string(param_pub_key, &ppubkey, sizeof(pubkey), &pub_len))) goto err; if (priv_len > 0) { memcpy(key->privkey, privkey, priv_len); key->hasprivkey = 1; } if (pub_len > 0) { memcpy(key->pubkey, pubkey, pub_len); key->haspubkey = 1; } res = 1; err: return res; } static int xor_export(void *vkey, int select, OSSL_CALLBACK *param_cb, void *cbarg) { XORKEY *key = vkey; OSSL_PARAM params[3], *p = params; if (key == NULL || (select & OSSL_KEYMGMT_SELECT_KEYPAIR) == 0) return 0; *p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PRIV_KEY, key->privkey, sizeof(key->privkey)); *p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY, key->pubkey, sizeof(key->pubkey)); *p++ = OSSL_PARAM_construct_end(); return param_cb(params, cbarg); } static const OSSL_PARAM xor_key_types[] = { OSSL_PARAM_BN(OSSL_PKEY_PARAM_PUB_KEY, NULL, 0), OSSL_PARAM_BN(OSSL_PKEY_PARAM_PRIV_KEY, NULL, 0), OSSL_PARAM_END }; static const OSSL_PARAM *xor_import_types(int select) { return (select & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0 ? xor_key_types : NULL; } static const OSSL_PARAM *xor_import_types_ex(void *provctx, int select) { if (provctx == NULL) return NULL; return xor_import_types(select); } static const OSSL_PARAM *xor_export_types(int select) { return (select & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0 ? xor_key_types : NULL; } static const OSSL_PARAM *xor_export_types_ex(void *provctx, int select) { if (provctx == NULL) return NULL; return xor_export_types(select); } static void xor_gen_cleanup(void *genctx) { OPENSSL_free(genctx); } static const OSSL_DISPATCH xor_keymgmt_functions[] = { { OSSL_FUNC_KEYMGMT_NEW, (void (*)(void))xor_newkey }, { OSSL_FUNC_KEYMGMT_GEN_INIT, (void (*)(void))xor_gen_init }, { OSSL_FUNC_KEYMGMT_GEN_SET_PARAMS, (void (*)(void))xor_gen_set_params }, { OSSL_FUNC_KEYMGMT_GEN_SETTABLE_PARAMS, (void (*)(void))xor_gen_settable_params }, { OSSL_FUNC_KEYMGMT_GEN, (void (*)(void))xor_gen }, { OSSL_FUNC_KEYMGMT_GEN_CLEANUP, (void (*)(void))xor_gen_cleanup }, { OSSL_FUNC_KEYMGMT_GET_PARAMS, (void (*) (void))xor_get_params }, { OSSL_FUNC_KEYMGMT_GETTABLE_PARAMS, (void (*) (void))xor_gettable_params }, { OSSL_FUNC_KEYMGMT_SET_PARAMS, (void (*) (void))xor_set_params }, { OSSL_FUNC_KEYMGMT_SETTABLE_PARAMS, (void (*) (void))xor_settable_params }, { OSSL_FUNC_KEYMGMT_HAS, (void (*)(void))xor_has }, { OSSL_FUNC_KEYMGMT_DUP, (void (*)(void))xor_dup }, { OSSL_FUNC_KEYMGMT_FREE, (void (*)(void))xor_freekey }, { OSSL_FUNC_KEYMGMT_IMPORT, (void (*)(void))xor_import }, { OSSL_FUNC_KEYMGMT_IMPORT_TYPES, (void (*)(void))xor_import_types }, { OSSL_FUNC_KEYMGMT_IMPORT_TYPES_EX, (void (*)(void))xor_import_types_ex }, { OSSL_FUNC_KEYMGMT_EXPORT, (void (*)(void))xor_export }, { OSSL_FUNC_KEYMGMT_EXPORT_TYPES, (void (*)(void))xor_export_types }, { OSSL_FUNC_KEYMGMT_EXPORT_TYPES_EX, (void (*)(void))xor_export_types_ex }, OSSL_DISPATCH_END }; /* We're re-using most XOR keymgmt functions also for signature operations: */ static void *xor_xorhmacsig_gen(void *genctx, OSSL_CALLBACK *osslcb, void *cbarg) { XORKEY *k = xor_gen(genctx, osslcb, cbarg); if (k == NULL) return NULL; k->tls_name = OPENSSL_strdup(XORSIGALG_NAME); if (k->tls_name == NULL) { xor_freekey(k); return NULL; } return k; } static void *xor_xorhmacsha2sig_gen(void *genctx, OSSL_CALLBACK *osslcb, void *cbarg) { XORKEY* k = xor_gen(genctx, osslcb, cbarg); if (k == NULL) return NULL; k->tls_name = OPENSSL_strdup(XORSIGALG_HASH_NAME); if (k->tls_name == NULL) { xor_freekey(k); return NULL; } return k; } static const OSSL_DISPATCH xor_xorhmacsig_keymgmt_functions[] = { { OSSL_FUNC_KEYMGMT_NEW, (void (*)(void))xor_newkey }, { OSSL_FUNC_KEYMGMT_GEN_INIT, (void (*)(void))xor_gen_init }, { OSSL_FUNC_KEYMGMT_GEN_SET_PARAMS, (void (*)(void))xor_gen_set_params }, { OSSL_FUNC_KEYMGMT_GEN_SETTABLE_PARAMS, (void (*)(void))xor_gen_settable_params }, { OSSL_FUNC_KEYMGMT_GEN, (void (*)(void))xor_xorhmacsig_gen }, { OSSL_FUNC_KEYMGMT_GEN_CLEANUP, (void (*)(void))xor_gen_cleanup }, { OSSL_FUNC_KEYMGMT_GET_PARAMS, (void (*) (void))xor_get_params }, { OSSL_FUNC_KEYMGMT_GETTABLE_PARAMS, (void (*) (void))xor_gettable_params }, { OSSL_FUNC_KEYMGMT_SET_PARAMS, (void (*) (void))xor_set_params }, { OSSL_FUNC_KEYMGMT_SETTABLE_PARAMS, (void (*) (void))xor_settable_params }, { OSSL_FUNC_KEYMGMT_HAS, (void (*)(void))xor_has }, { OSSL_FUNC_KEYMGMT_DUP, (void (*)(void))xor_dup }, { OSSL_FUNC_KEYMGMT_FREE, (void (*)(void))xor_freekey }, { OSSL_FUNC_KEYMGMT_IMPORT, (void (*)(void))xor_import }, { OSSL_FUNC_KEYMGMT_IMPORT_TYPES, (void (*)(void))xor_import_types }, { OSSL_FUNC_KEYMGMT_EXPORT, (void (*)(void))xor_export }, { OSSL_FUNC_KEYMGMT_EXPORT_TYPES, (void (*)(void))xor_export_types }, { OSSL_FUNC_KEYMGMT_LOAD, (void (*)(void))xor_load }, { OSSL_FUNC_KEYMGMT_MATCH, (void (*)(void))xor_match }, OSSL_DISPATCH_END }; static const OSSL_DISPATCH xor_xorhmacsha2sig_keymgmt_functions[] = { { OSSL_FUNC_KEYMGMT_NEW, (void (*)(void))xor_newkey }, { OSSL_FUNC_KEYMGMT_GEN_INIT, (void (*)(void))xor_gen_init }, { OSSL_FUNC_KEYMGMT_GEN_SET_PARAMS, (void (*)(void))xor_gen_set_params }, { OSSL_FUNC_KEYMGMT_GEN_SETTABLE_PARAMS, (void (*)(void))xor_gen_settable_params }, { OSSL_FUNC_KEYMGMT_GEN, (void (*)(void))xor_xorhmacsha2sig_gen }, { OSSL_FUNC_KEYMGMT_GEN_CLEANUP, (void (*)(void))xor_gen_cleanup }, { OSSL_FUNC_KEYMGMT_GET_PARAMS, (void (*) (void))xor_get_params }, { OSSL_FUNC_KEYMGMT_GETTABLE_PARAMS, (void (*) (void))xor_gettable_params }, { OSSL_FUNC_KEYMGMT_SET_PARAMS, (void (*) (void))xor_set_params }, { OSSL_FUNC_KEYMGMT_SETTABLE_PARAMS, (void (*) (void))xor_settable_params }, { OSSL_FUNC_KEYMGMT_HAS, (void (*)(void))xor_has }, { OSSL_FUNC_KEYMGMT_DUP, (void (*)(void))xor_dup }, { OSSL_FUNC_KEYMGMT_FREE, (void (*)(void))xor_freekey }, { OSSL_FUNC_KEYMGMT_IMPORT, (void (*)(void))xor_import }, { OSSL_FUNC_KEYMGMT_IMPORT_TYPES, (void (*)(void))xor_import_types }, { OSSL_FUNC_KEYMGMT_EXPORT, (void (*)(void))xor_export }, { OSSL_FUNC_KEYMGMT_EXPORT_TYPES, (void (*)(void))xor_export_types }, { OSSL_FUNC_KEYMGMT_LOAD, (void (*)(void))xor_load }, { OSSL_FUNC_KEYMGMT_MATCH, (void (*)(void))xor_match }, OSSL_DISPATCH_END }; typedef enum { KEY_OP_PUBLIC, KEY_OP_PRIVATE, KEY_OP_KEYGEN } xor_key_op_t; /* Re-create XORKEY from encoding(s): Same end-state as after key-gen */ static XORKEY *xor_key_op(const X509_ALGOR *palg, const unsigned char *p, int plen, xor_key_op_t op, OSSL_LIB_CTX *libctx, const char *propq) { XORKEY *key = NULL; int nid = NID_undef; if (palg != NULL) { int ptype; /* Algorithm parameters must be absent */ X509_ALGOR_get0(NULL, &ptype, NULL, palg); if (ptype != V_ASN1_UNDEF || palg->algorithm == NULL) { ERR_raise(ERR_LIB_USER, XORPROV_R_INVALID_ENCODING); return 0; } nid = OBJ_obj2nid(palg->algorithm); } if (p == NULL || nid == EVP_PKEY_NONE || nid == NID_undef) { ERR_raise(ERR_LIB_USER, XORPROV_R_INVALID_ENCODING); return 0; } key = xor_newkey(NULL); if (key == NULL) { ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE); return 0; } if (XOR_KEY_SIZE != plen) { ERR_raise(ERR_LIB_USER, XORPROV_R_INVALID_ENCODING); goto err; } if (op == KEY_OP_PUBLIC) { memcpy(key->pubkey, p, plen); key->haspubkey = 1; } else { memcpy(key->privkey, p, plen); key->hasprivkey = 1; } key->tls_name = OPENSSL_strdup(OBJ_nid2sn(nid)); if (key->tls_name == NULL) goto err; return key; err: xor_freekey(key); return NULL; } static XORKEY *xor_key_from_x509pubkey(const X509_PUBKEY *xpk, OSSL_LIB_CTX *libctx, const char *propq) { const unsigned char *p; int plen; X509_ALGOR *palg; if (!xpk || (!X509_PUBKEY_get0_param(NULL, &p, &plen, &palg, xpk))) { return NULL; } return xor_key_op(palg, p, plen, KEY_OP_PUBLIC, libctx, propq); } static XORKEY *xor_key_from_pkcs8(const PKCS8_PRIV_KEY_INFO *p8inf, OSSL_LIB_CTX *libctx, const char *propq) { XORKEY *xork = NULL; const unsigned char *p; int plen; ASN1_OCTET_STRING *oct = NULL; const X509_ALGOR *palg; if (!PKCS8_pkey_get0(NULL, &p, &plen, &palg, p8inf)) return 0; oct = d2i_ASN1_OCTET_STRING(NULL, &p, plen); if (oct == NULL) { p = NULL; plen = 0; } else { p = ASN1_STRING_get0_data(oct); plen = ASN1_STRING_length(oct); } xork = xor_key_op(palg, p, plen, KEY_OP_PRIVATE, libctx, propq); ASN1_OCTET_STRING_free(oct); return xork; } static const OSSL_ALGORITHM tls_prov_keymgmt[] = { /* * Obviously this is not FIPS approved, but in order to test in conjunction * with the FIPS provider we pretend that it is. */ { "XOR", "provider=tls-provider,fips=yes", xor_keymgmt_functions }, { XORSIGALG_NAME, "provider=tls-provider,fips=yes", xor_xorhmacsig_keymgmt_functions }, { XORSIGALG_HASH_NAME, "provider=tls-provider,fips=yes", xor_xorhmacsha2sig_keymgmt_functions }, { NULL, NULL, NULL } }; struct key2any_ctx_st { PROV_XOR_CTX *provctx; /* Set to 0 if parameters should not be saved (dsa only) */ int save_parameters; /* Set to 1 if intending to encrypt/decrypt, otherwise 0 */ int cipher_intent; EVP_CIPHER *cipher; OSSL_PASSPHRASE_CALLBACK *pwcb; void *pwcbarg; }; typedef int check_key_type_fn(const void *key, int nid); typedef int key_to_paramstring_fn(const void *key, int nid, int save, void **str, int *strtype); typedef int key_to_der_fn(BIO *out, const void *key, int key_nid, const char *pemname, key_to_paramstring_fn *p2s, i2d_of_void *k2d, struct key2any_ctx_st *ctx); typedef int write_bio_of_void_fn(BIO *bp, const void *x); /* Free the blob allocated during key_to_paramstring_fn */ static void free_asn1_data(int type, void *data) { switch(type) { case V_ASN1_OBJECT: ASN1_OBJECT_free(data); break; case V_ASN1_SEQUENCE: ASN1_STRING_free(data); break; } } static PKCS8_PRIV_KEY_INFO *key_to_p8info(const void *key, int key_nid, void *params, int params_type, i2d_of_void *k2d) { /* der, derlen store the key DER output and its length */ unsigned char *der = NULL; int derlen; /* The final PKCS#8 info */ PKCS8_PRIV_KEY_INFO *p8info = NULL; if ((p8info = PKCS8_PRIV_KEY_INFO_new()) == NULL || (derlen = k2d(key, &der)) <= 0 || !PKCS8_pkey_set0(p8info, OBJ_nid2obj(key_nid), 0, V_ASN1_UNDEF, NULL, der, derlen)) { ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE); PKCS8_PRIV_KEY_INFO_free(p8info); OPENSSL_free(der); p8info = NULL; } return p8info; } static X509_SIG *p8info_to_encp8(PKCS8_PRIV_KEY_INFO *p8info, struct key2any_ctx_st *ctx) { X509_SIG *p8 = NULL; char kstr[PEM_BUFSIZE]; size_t klen = 0; OSSL_LIB_CTX *libctx = PROV_XOR_LIBCTX_OF(ctx->provctx); if (ctx->cipher == NULL || ctx->pwcb == NULL) return NULL; if (!ctx->pwcb(kstr, PEM_BUFSIZE, &klen, NULL, ctx->pwcbarg)) { ERR_raise(ERR_LIB_USER, PROV_R_UNABLE_TO_GET_PASSPHRASE); return NULL; } /* First argument == -1 means "standard" */ p8 = PKCS8_encrypt_ex(-1, ctx->cipher, kstr, klen, NULL, 0, 0, p8info, libctx, NULL); OPENSSL_cleanse(kstr, klen); return p8; } static X509_SIG *key_to_encp8(const void *key, int key_nid, void *params, int params_type, i2d_of_void *k2d, struct key2any_ctx_st *ctx) { PKCS8_PRIV_KEY_INFO *p8info = key_to_p8info(key, key_nid, params, params_type, k2d); X509_SIG *p8 = NULL; if (p8info == NULL) { free_asn1_data(params_type, params); } else { p8 = p8info_to_encp8(p8info, ctx); PKCS8_PRIV_KEY_INFO_free(p8info); } return p8; } static X509_PUBKEY *xorx_key_to_pubkey(const void *key, int key_nid, void *params, int params_type, i2d_of_void k2d) { /* der, derlen store the key DER output and its length */ unsigned char *der = NULL; int derlen; /* The final X509_PUBKEY */ X509_PUBKEY *xpk = NULL; if ((xpk = X509_PUBKEY_new()) == NULL || (derlen = k2d(key, &der)) <= 0 || !X509_PUBKEY_set0_param(xpk, OBJ_nid2obj(key_nid), V_ASN1_UNDEF, NULL, der, derlen)) { ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE); X509_PUBKEY_free(xpk); OPENSSL_free(der); xpk = NULL; } return xpk; } /* * key_to_epki_* produce encoded output with the private key data in a * EncryptedPrivateKeyInfo structure (defined by PKCS#8). They require * that there's an intent to encrypt, anything else is an error. * * key_to_pki_* primarily produce encoded output with the private key data * in a PrivateKeyInfo structure (also defined by PKCS#8). However, if * there is an intent to encrypt the data, the corresponding key_to_epki_* * function is used instead. * * key_to_spki_* produce encoded output with the public key data in an * X.509 SubjectPublicKeyInfo. * * Key parameters don't have any defined envelopment of this kind, but are * included in some manner in the output from the functions described above, * either in the AlgorithmIdentifier's parameter field, or as part of the * key data itself. */ static int key_to_epki_der_priv_bio(BIO *out, const void *key, int key_nid, ossl_unused const char *pemname, key_to_paramstring_fn *p2s, i2d_of_void *k2d, struct key2any_ctx_st *ctx) { int ret = 0; void *str = NULL; int strtype = V_ASN1_UNDEF; X509_SIG *p8; if (!ctx->cipher_intent) return 0; if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters, &str, &strtype)) return 0; p8 = key_to_encp8(key, key_nid, str, strtype, k2d, ctx); if (p8 != NULL) ret = i2d_PKCS8_bio(out, p8); X509_SIG_free(p8); return ret; } static int key_to_epki_pem_priv_bio(BIO *out, const void *key, int key_nid, ossl_unused const char *pemname, key_to_paramstring_fn *p2s, i2d_of_void *k2d, struct key2any_ctx_st *ctx) { int ret = 0; void *str = NULL; int strtype = V_ASN1_UNDEF; X509_SIG *p8; if (!ctx->cipher_intent) return 0; if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters, &str, &strtype)) return 0; p8 = key_to_encp8(key, key_nid, str, strtype, k2d, ctx); if (p8 != NULL) ret = PEM_write_bio_PKCS8(out, p8); X509_SIG_free(p8); return ret; } static int key_to_pki_der_priv_bio(BIO *out, const void *key, int key_nid, ossl_unused const char *pemname, key_to_paramstring_fn *p2s, i2d_of_void *k2d, struct key2any_ctx_st *ctx) { int ret = 0; void *str = NULL; int strtype = V_ASN1_UNDEF; PKCS8_PRIV_KEY_INFO *p8info; if (ctx->cipher_intent) return key_to_epki_der_priv_bio(out, key, key_nid, pemname, p2s, k2d, ctx); if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters, &str, &strtype)) return 0; p8info = key_to_p8info(key, key_nid, str, strtype, k2d); if (p8info != NULL) ret = i2d_PKCS8_PRIV_KEY_INFO_bio(out, p8info); else free_asn1_data(strtype, str); PKCS8_PRIV_KEY_INFO_free(p8info); return ret; } static int key_to_pki_pem_priv_bio(BIO *out, const void *key, int key_nid, ossl_unused const char *pemname, key_to_paramstring_fn *p2s, i2d_of_void *k2d, struct key2any_ctx_st *ctx) { int ret = 0; void *str = NULL; int strtype = V_ASN1_UNDEF; PKCS8_PRIV_KEY_INFO *p8info; if (ctx->cipher_intent) return key_to_epki_pem_priv_bio(out, key, key_nid, pemname, p2s, k2d, ctx); if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters, &str, &strtype)) return 0; p8info = key_to_p8info(key, key_nid, str, strtype, k2d); if (p8info != NULL) ret = PEM_write_bio_PKCS8_PRIV_KEY_INFO(out, p8info); else free_asn1_data(strtype, str); PKCS8_PRIV_KEY_INFO_free(p8info); return ret; } static int key_to_spki_der_pub_bio(BIO *out, const void *key, int key_nid, ossl_unused const char *pemname, key_to_paramstring_fn *p2s, i2d_of_void *k2d, struct key2any_ctx_st *ctx) { int ret = 0; X509_PUBKEY *xpk = NULL; void *str = NULL; int strtype = V_ASN1_UNDEF; if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters, &str, &strtype)) return 0; xpk = xorx_key_to_pubkey(key, key_nid, str, strtype, k2d); if (xpk != NULL) ret = i2d_X509_PUBKEY_bio(out, xpk); X509_PUBKEY_free(xpk); return ret; } static int key_to_spki_pem_pub_bio(BIO *out, const void *key, int key_nid, ossl_unused const char *pemname, key_to_paramstring_fn *p2s, i2d_of_void *k2d, struct key2any_ctx_st *ctx) { int ret = 0; X509_PUBKEY *xpk = NULL; void *str = NULL; int strtype = V_ASN1_UNDEF; if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters, &str, &strtype)) return 0; xpk = xorx_key_to_pubkey(key, key_nid, str, strtype, k2d); if (xpk != NULL) ret = PEM_write_bio_X509_PUBKEY(out, xpk); else free_asn1_data(strtype, str); /* Also frees |str| */ X509_PUBKEY_free(xpk); return ret; } /* ---------------------------------------------------------------------- */ static int prepare_xorx_params(const void *xorxkey, int nid, int save, void **pstr, int *pstrtype) { ASN1_OBJECT *params = NULL; XORKEY *k = (XORKEY*)xorxkey; if (k->tls_name && OBJ_sn2nid(k->tls_name) != nid) { ERR_raise(ERR_LIB_USER, XORPROV_R_INVALID_KEY); return 0; } if (nid == NID_undef) { ERR_raise(ERR_LIB_USER, XORPROV_R_MISSING_OID); return 0; } params = OBJ_nid2obj(nid); if (params == NULL || OBJ_length(params) == 0) { /* unexpected error */ ERR_raise(ERR_LIB_USER, XORPROV_R_MISSING_OID); ASN1_OBJECT_free(params); return 0; } *pstr = params; *pstrtype = V_ASN1_OBJECT; return 1; } static int xorx_spki_pub_to_der(const void *vecxkey, unsigned char **pder) { const XORKEY *xorxkey = vecxkey; unsigned char *keyblob; int retlen; if (xorxkey == NULL) { ERR_raise(ERR_LIB_USER, ERR_R_PASSED_NULL_PARAMETER); return 0; } keyblob = OPENSSL_memdup(xorxkey->pubkey, retlen = XOR_KEY_SIZE); if (keyblob == NULL) { ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE); return 0; } *pder = keyblob; return retlen; } static int xorx_pki_priv_to_der(const void *vecxkey, unsigned char **pder) { XORKEY *xorxkey = (XORKEY *)vecxkey; unsigned char* buf = NULL; ASN1_OCTET_STRING oct; int keybloblen; if (xorxkey == NULL) { ERR_raise(ERR_LIB_USER, ERR_R_PASSED_NULL_PARAMETER); return 0; } buf = OPENSSL_secure_malloc(XOR_KEY_SIZE); memcpy(buf, xorxkey->privkey, XOR_KEY_SIZE); oct.data = buf; oct.length = XOR_KEY_SIZE; oct.flags = 0; keybloblen = i2d_ASN1_OCTET_STRING(&oct, pder); if (keybloblen < 0) { ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE); keybloblen = 0; } OPENSSL_secure_clear_free(buf, XOR_KEY_SIZE); return keybloblen; } # define xorx_epki_priv_to_der xorx_pki_priv_to_der /* * XORX only has PKCS#8 / SubjectPublicKeyInfo * representation, so we don't define xorx_type_specific_[priv,pub,params]_to_der. */ # define xorx_check_key_type NULL # define xorhmacsig_evp_type 0 # define xorhmacsig_input_type XORSIGALG_NAME # define xorhmacsig_pem_type XORSIGALG_NAME # define xorhmacsha2sig_evp_type 0 # define xorhmacsha2sig_input_type XORSIGALG_HASH_NAME # define xorhmacsha2sig_pem_type XORSIGALG_HASH_NAME /* ---------------------------------------------------------------------- */ static OSSL_FUNC_decoder_newctx_fn key2any_newctx; static OSSL_FUNC_decoder_freectx_fn key2any_freectx; static void *key2any_newctx(void *provctx) { struct key2any_ctx_st *ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx != NULL) { ctx->provctx = provctx; ctx->save_parameters = 1; } return ctx; } static void key2any_freectx(void *vctx) { struct key2any_ctx_st *ctx = vctx; EVP_CIPHER_free(ctx->cipher); OPENSSL_free(ctx); } static const OSSL_PARAM *key2any_settable_ctx_params(ossl_unused void *provctx) { static const OSSL_PARAM settables[] = { OSSL_PARAM_utf8_string(OSSL_ENCODER_PARAM_CIPHER, NULL, 0), OSSL_PARAM_utf8_string(OSSL_ENCODER_PARAM_PROPERTIES, NULL, 0), OSSL_PARAM_END, }; return settables; } static int key2any_set_ctx_params(void *vctx, const OSSL_PARAM params[]) { struct key2any_ctx_st *ctx = vctx; OSSL_LIB_CTX *libctx = PROV_XOR_LIBCTX_OF(ctx->provctx); const OSSL_PARAM *cipherp = OSSL_PARAM_locate_const(params, OSSL_ENCODER_PARAM_CIPHER); const OSSL_PARAM *propsp = OSSL_PARAM_locate_const(params, OSSL_ENCODER_PARAM_PROPERTIES); const OSSL_PARAM *save_paramsp = OSSL_PARAM_locate_const(params, OSSL_ENCODER_PARAM_SAVE_PARAMETERS); if (cipherp != NULL) { const char *ciphername = NULL; const char *props = NULL; if (!OSSL_PARAM_get_utf8_string_ptr(cipherp, &ciphername)) return 0; if (propsp != NULL && !OSSL_PARAM_get_utf8_string_ptr(propsp, &props)) return 0; EVP_CIPHER_free(ctx->cipher); ctx->cipher = NULL; ctx->cipher_intent = ciphername != NULL; if (ciphername != NULL && ((ctx->cipher = EVP_CIPHER_fetch(libctx, ciphername, props)) == NULL)) { return 0; } } if (save_paramsp != NULL) { if (!OSSL_PARAM_get_int(save_paramsp, &ctx->save_parameters)) { return 0; } } return 1; } static int key2any_check_selection(int selection, int selection_mask) { /* * The selections are kinda sorta "levels", i.e. each selection given * here is assumed to include those following. */ int checks[] = { OSSL_KEYMGMT_SELECT_PRIVATE_KEY, OSSL_KEYMGMT_SELECT_PUBLIC_KEY, OSSL_KEYMGMT_SELECT_ALL_PARAMETERS }; size_t i; /* The decoder implementations made here support guessing */ if (selection == 0) return 1; for (i = 0; i < OSSL_NELEM(checks); i++) { int check1 = (selection & checks[i]) != 0; int check2 = (selection_mask & checks[i]) != 0; /* * If the caller asked for the currently checked bit(s), return * whether the decoder description says it's supported. */ if (check1) return check2; } /* This should be dead code, but just to be safe... */ return 0; } static int key2any_encode(struct key2any_ctx_st *ctx, OSSL_CORE_BIO *cout, const void *key, const char* typestr, const char *pemname, key_to_der_fn *writer, OSSL_PASSPHRASE_CALLBACK *pwcb, void *pwcbarg, key_to_paramstring_fn *key2paramstring, i2d_of_void *key2der) { int ret = 0; int type = OBJ_sn2nid(typestr); if (key == NULL || type <= 0) { ERR_raise(ERR_LIB_USER, ERR_R_PASSED_NULL_PARAMETER); } else if (writer != NULL) { BIO *out = BIO_new_from_core_bio(ctx->provctx->libctx, cout); if (out != NULL) { ctx->pwcb = pwcb; ctx->pwcbarg = pwcbarg; ret = writer(out, key, type, pemname, key2paramstring, key2der, ctx); } BIO_free(out); } else { ERR_raise(ERR_LIB_USER, ERR_R_PASSED_INVALID_ARGUMENT); } return ret; } #define DO_ENC_PRIVATE_KEY_selection_mask OSSL_KEYMGMT_SELECT_PRIVATE_KEY #define DO_ENC_PRIVATE_KEY(impl, type, kind, output) \ if ((selection & DO_ENC_PRIVATE_KEY_selection_mask) != 0) \ return key2any_encode(ctx, cout, key, impl##_pem_type, \ impl##_pem_type " PRIVATE KEY", \ key_to_##kind##_##output##_priv_bio, \ cb, cbarg, prepare_##type##_params, \ type##_##kind##_priv_to_der); #define DO_ENC_PUBLIC_KEY_selection_mask OSSL_KEYMGMT_SELECT_PUBLIC_KEY #define DO_ENC_PUBLIC_KEY(impl, type, kind, output) \ if ((selection & DO_ENC_PUBLIC_KEY_selection_mask) != 0) \ return key2any_encode(ctx, cout, key, impl##_pem_type, \ impl##_pem_type " PUBLIC KEY", \ key_to_##kind##_##output##_pub_bio, \ cb, cbarg, prepare_##type##_params, \ type##_##kind##_pub_to_der); #define DO_ENC_PARAMETERS_selection_mask OSSL_KEYMGMT_SELECT_ALL_PARAMETERS #define DO_ENC_PARAMETERS(impl, type, kind, output) \ if ((selection & DO_ENC_PARAMETERS_selection_mask) != 0) \ return key2any_encode(ctx, cout, key, impl##_pem_type, \ impl##_pem_type " PARAMETERS", \ key_to_##kind##_##output##_param_bio, \ NULL, NULL, NULL, \ type##_##kind##_params_to_der); /*- * Implement the kinds of output structure that can be produced. They are * referred to by name, and for each name, the following macros are defined * (braces not included): * * DO_{kind}_selection_mask * * A mask of selection bits that must not be zero. This is used as a * selection criterion for each implementation. * This mask must never be zero. * * DO_{kind} * * The performing macro. It must use the DO_ macros defined above, * always in this order: * * - DO_PRIVATE_KEY * - DO_PUBLIC_KEY * - DO_PARAMETERS * * Any of those may be omitted, but the relative order must still be * the same. */ /* * PKCS#8 defines two structures for private keys only: * - PrivateKeyInfo (raw unencrypted form) * - EncryptedPrivateKeyInfo (encrypted wrapping) * * To allow a certain amount of flexibility, we allow the routines * for PrivateKeyInfo to also produce EncryptedPrivateKeyInfo if a * passphrase callback has been passed to them. */ #define DO_ENC_PrivateKeyInfo_selection_mask DO_ENC_PRIVATE_KEY_selection_mask #define DO_ENC_PrivateKeyInfo(impl, type, output) \ DO_ENC_PRIVATE_KEY(impl, type, pki, output) #define DO_ENC_EncryptedPrivateKeyInfo_selection_mask DO_ENC_PRIVATE_KEY_selection_mask #define DO_ENC_EncryptedPrivateKeyInfo(impl, type, output) \ DO_ENC_PRIVATE_KEY(impl, type, epki, output) /* SubjectPublicKeyInfo is a structure for public keys only */ #define DO_ENC_SubjectPublicKeyInfo_selection_mask DO_ENC_PUBLIC_KEY_selection_mask #define DO_ENC_SubjectPublicKeyInfo(impl, type, output) \ DO_ENC_PUBLIC_KEY(impl, type, spki, output) /* * MAKE_ENCODER is the single driver for creating OSSL_DISPATCH tables. * It takes the following arguments: * * impl This is the key type name that's being implemented. * type This is the type name for the set of functions that implement * the key type. For example, ed25519, ed448, x25519 and x448 * are all implemented with the exact same set of functions. * kind What kind of support to implement. These translate into * the DO_##kind macros above. * output The output type to implement. may be der or pem. * * The resulting OSSL_DISPATCH array gets the following name (expressed in * C preprocessor terms) from those arguments: * * xor_##impl##_to_##kind##_##output##_encoder_functions */ #define MAKE_ENCODER(impl, type, kind, output) \ static OSSL_FUNC_encoder_import_object_fn \ impl##_to_##kind##_##output##_import_object; \ static OSSL_FUNC_encoder_free_object_fn \ impl##_to_##kind##_##output##_free_object; \ static OSSL_FUNC_encoder_encode_fn \ impl##_to_##kind##_##output##_encode; \ \ static void * \ impl##_to_##kind##_##output##_import_object(void *vctx, int selection, \ const OSSL_PARAM params[]) \ { \ struct key2any_ctx_st *ctx = vctx; \ \ return xor_prov_import_key(xor_##impl##_keymgmt_functions, \ ctx->provctx, selection, params); \ } \ static void impl##_to_##kind##_##output##_free_object(void *key) \ { \ xor_prov_free_key(xor_##impl##_keymgmt_functions, key); \ } \ static int impl##_to_##kind##_##output##_does_selection(void *ctx, \ int selection) \ { \ return key2any_check_selection(selection, \ DO_ENC_##kind##_selection_mask); \ } \ static int \ impl##_to_##kind##_##output##_encode(void *ctx, OSSL_CORE_BIO *cout, \ const void *key, \ const OSSL_PARAM key_abstract[], \ int selection, \ OSSL_PASSPHRASE_CALLBACK *cb, \ void *cbarg) \ { \ /* We don't deal with abstract objects */ \ if (key_abstract != NULL) { \ ERR_raise(ERR_LIB_USER, ERR_R_PASSED_INVALID_ARGUMENT); \ return 0; \ } \ DO_ENC_##kind(impl, type, output) \ \ ERR_raise(ERR_LIB_USER, ERR_R_PASSED_INVALID_ARGUMENT); \ return 0; \ } \ static const OSSL_DISPATCH \ xor_##impl##_to_##kind##_##output##_encoder_functions[] = { \ { OSSL_FUNC_ENCODER_NEWCTX, \ (void (*)(void))key2any_newctx }, \ { OSSL_FUNC_ENCODER_FREECTX, \ (void (*)(void))key2any_freectx }, \ { OSSL_FUNC_ENCODER_SETTABLE_CTX_PARAMS, \ (void (*)(void))key2any_settable_ctx_params }, \ { OSSL_FUNC_ENCODER_SET_CTX_PARAMS, \ (void (*)(void))key2any_set_ctx_params }, \ { OSSL_FUNC_ENCODER_DOES_SELECTION, \ (void (*)(void))impl##_to_##kind##_##output##_does_selection }, \ { OSSL_FUNC_ENCODER_IMPORT_OBJECT, \ (void (*)(void))impl##_to_##kind##_##output##_import_object }, \ { OSSL_FUNC_ENCODER_FREE_OBJECT, \ (void (*)(void))impl##_to_##kind##_##output##_free_object }, \ { OSSL_FUNC_ENCODER_ENCODE, \ (void (*)(void))impl##_to_##kind##_##output##_encode }, \ OSSL_DISPATCH_END \ } /* * Replacements for i2d_{TYPE}PrivateKey, i2d_{TYPE}PublicKey, * i2d_{TYPE}params, as they exist. */ /* * PKCS#8 and SubjectPublicKeyInfo support. This may duplicate some of the * implementations specified above, but are more specific. * The SubjectPublicKeyInfo implementations also replace the * PEM_write_bio_{TYPE}_PUBKEY functions. * For PEM, these are expected to be used by PEM_write_bio_PrivateKey(), * PEM_write_bio_PUBKEY() and PEM_write_bio_Parameters(). */ MAKE_ENCODER(xorhmacsig, xorx, EncryptedPrivateKeyInfo, der); MAKE_ENCODER(xorhmacsig, xorx, EncryptedPrivateKeyInfo, pem); MAKE_ENCODER(xorhmacsig, xorx, PrivateKeyInfo, der); MAKE_ENCODER(xorhmacsig, xorx, PrivateKeyInfo, pem); MAKE_ENCODER(xorhmacsig, xorx, SubjectPublicKeyInfo, der); MAKE_ENCODER(xorhmacsig, xorx, SubjectPublicKeyInfo, pem); MAKE_ENCODER(xorhmacsha2sig, xorx, EncryptedPrivateKeyInfo, der); MAKE_ENCODER(xorhmacsha2sig, xorx, EncryptedPrivateKeyInfo, pem); MAKE_ENCODER(xorhmacsha2sig, xorx, PrivateKeyInfo, der); MAKE_ENCODER(xorhmacsha2sig, xorx, PrivateKeyInfo, pem); MAKE_ENCODER(xorhmacsha2sig, xorx, SubjectPublicKeyInfo, der); MAKE_ENCODER(xorhmacsha2sig, xorx, SubjectPublicKeyInfo, pem); static const OSSL_ALGORITHM tls_prov_encoder[] = { #define ENCODER_PROVIDER "tls-provider" #ifndef ENCODER_PROVIDER # error Macro ENCODER_PROVIDER undefined #endif #define ENCODER_STRUCTURE_PKCS8 "pkcs8" #define ENCODER_STRUCTURE_SubjectPublicKeyInfo "SubjectPublicKeyInfo" #define ENCODER_STRUCTURE_PrivateKeyInfo "PrivateKeyInfo" #define ENCODER_STRUCTURE_EncryptedPrivateKeyInfo "EncryptedPrivateKeyInfo" #define ENCODER_STRUCTURE_PKCS1 "pkcs1" #define ENCODER_STRUCTURE_PKCS3 "pkcs3" /* Arguments are prefixed with '_' to avoid build breaks on certain platforms */ /* * Obviously this is not FIPS approved, but in order to test in conjunction * with the FIPS provider we pretend that it is. */ #define ENCODER_TEXT(_name, _sym) \ { _name, \ "provider=" ENCODER_PROVIDER ",fips=yes,output=text", \ (xor_##_sym##_to_text_encoder_functions) } #define ENCODER(_name, _sym, _fips, _output) \ { _name, \ "provider=" ENCODER_PROVIDER ",fips=yes,output=" #_output, \ (xor_##_sym##_to_##_output##_encoder_functions) } #define ENCODER_w_structure(_name, _sym, _output, _structure) \ { _name, \ "provider=" ENCODER_PROVIDER ",fips=yes,output=" #_output \ ",structure=" ENCODER_STRUCTURE_##_structure, \ (xor_##_sym##_to_##_structure##_##_output##_encoder_functions) } /* * Entries for human text "encoders" */ /* * Entries for PKCS#8 and SubjectPublicKeyInfo. * The "der" ones are added convenience for any user that wants to use * OSSL_ENCODER directly. * The "pem" ones also support PEM_write_bio_PrivateKey() and * PEM_write_bio_PUBKEY(). */ ENCODER_w_structure(XORSIGALG_NAME, xorhmacsig, der, PrivateKeyInfo), ENCODER_w_structure(XORSIGALG_NAME, xorhmacsig, pem, PrivateKeyInfo), ENCODER_w_structure(XORSIGALG_NAME, xorhmacsig, der, EncryptedPrivateKeyInfo), ENCODER_w_structure(XORSIGALG_NAME, xorhmacsig, pem, EncryptedPrivateKeyInfo), ENCODER_w_structure(XORSIGALG_NAME, xorhmacsig, der, SubjectPublicKeyInfo), ENCODER_w_structure(XORSIGALG_NAME, xorhmacsig, pem, SubjectPublicKeyInfo), ENCODER_w_structure(XORSIGALG_HASH_NAME, xorhmacsha2sig, der, PrivateKeyInfo), ENCODER_w_structure(XORSIGALG_HASH_NAME, xorhmacsha2sig, pem, PrivateKeyInfo), ENCODER_w_structure(XORSIGALG_HASH_NAME, xorhmacsha2sig, der, EncryptedPrivateKeyInfo), ENCODER_w_structure(XORSIGALG_HASH_NAME, xorhmacsha2sig, pem, EncryptedPrivateKeyInfo), ENCODER_w_structure(XORSIGALG_HASH_NAME, xorhmacsha2sig, der, SubjectPublicKeyInfo), ENCODER_w_structure(XORSIGALG_HASH_NAME, xorhmacsha2sig, pem, SubjectPublicKeyInfo), #undef ENCODER_PROVIDER { NULL, NULL, NULL } }; struct der2key_ctx_st; /* Forward declaration */ typedef int check_key_fn(void *, struct der2key_ctx_st *ctx); typedef void adjust_key_fn(void *, struct der2key_ctx_st *ctx); typedef void free_key_fn(void *); typedef void *d2i_PKCS8_fn(void **, const unsigned char **, long, struct der2key_ctx_st *); struct keytype_desc_st { const char *keytype_name; const OSSL_DISPATCH *fns; /* Keymgmt (to pilfer functions from) */ /* The input structure name */ const char *structure_name; /* * The EVP_PKEY_xxx type macro. Should be zero for type specific * structures, non-zero when the outermost structure is PKCS#8 or * SubjectPublicKeyInfo. This determines which of the function * pointers below will be used. */ int evp_type; /* The selection mask for OSSL_FUNC_decoder_does_selection() */ int selection_mask; /* For type specific decoders, we use the corresponding d2i */ d2i_of_void *d2i_private_key; /* From type-specific DER */ d2i_of_void *d2i_public_key; /* From type-specific DER */ d2i_of_void *d2i_key_params; /* From type-specific DER */ d2i_PKCS8_fn *d2i_PKCS8; /* Wrapped in a PrivateKeyInfo */ d2i_of_void *d2i_PUBKEY; /* Wrapped in a SubjectPublicKeyInfo */ /* * For any key, we may need to check that the key meets expectations. * This is useful when the same functions can decode several variants * of a key. */ check_key_fn *check_key; /* * For any key, we may need to make provider specific adjustments, such * as ensure the key carries the correct library context. */ adjust_key_fn *adjust_key; /* {type}_free() */ free_key_fn *free_key; }; /* * Start blatant code steal. Alternative: Open up d2i_X509_PUBKEY_INTERNAL * as per https://github.com/openssl/openssl/issues/16697 (TBD) * Code from openssl/crypto/x509/x_pubkey.c as * ossl_d2i_X509_PUBKEY_INTERNAL is presently not public */ struct X509_pubkey_st { X509_ALGOR *algor; ASN1_BIT_STRING *public_key; EVP_PKEY *pkey; /* extra data for the callback, used by d2i_PUBKEY_ex */ OSSL_LIB_CTX *libctx; char *propq; }; ASN1_SEQUENCE(X509_PUBKEY_INTERNAL) = { ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR), ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING) } static_ASN1_SEQUENCE_END_name(X509_PUBKEY, X509_PUBKEY_INTERNAL) static X509_PUBKEY *xorx_d2i_X509_PUBKEY_INTERNAL(const unsigned char **pp, long len, OSSL_LIB_CTX *libctx) { X509_PUBKEY *xpub = OPENSSL_zalloc(sizeof(*xpub)); if (xpub == NULL) return NULL; return (X509_PUBKEY *)ASN1_item_d2i_ex((ASN1_VALUE **)&xpub, pp, len, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL), libctx, NULL); } /* end steal https://github.com/openssl/openssl/issues/16697 */ /* * Context used for DER to key decoding. */ struct der2key_ctx_st { PROV_XOR_CTX *provctx; struct keytype_desc_st *desc; /* The selection that is passed to xor_der2key_decode() */ int selection; /* Flag used to signal that a failure is fatal */ unsigned int flag_fatal : 1; }; static int xor_read_der(PROV_XOR_CTX *provctx, OSSL_CORE_BIO *cin, unsigned char **data, long *len) { BUF_MEM *mem = NULL; BIO *in = BIO_new_from_core_bio(provctx->libctx, cin); int ok = (asn1_d2i_read_bio(in, &mem) >= 0); if (ok) { *data = (unsigned char *)mem->data; *len = (long)mem->length; OPENSSL_free(mem); } BIO_free(in); return ok; } typedef void *key_from_pkcs8_t(const PKCS8_PRIV_KEY_INFO *p8inf, OSSL_LIB_CTX *libctx, const char *propq); static void *xor_der2key_decode_p8(const unsigned char **input_der, long input_der_len, struct der2key_ctx_st *ctx, key_from_pkcs8_t *key_from_pkcs8) { PKCS8_PRIV_KEY_INFO *p8inf = NULL; const X509_ALGOR *alg = NULL; void *key = NULL; if ((p8inf = d2i_PKCS8_PRIV_KEY_INFO(NULL, input_der, input_der_len)) != NULL && PKCS8_pkey_get0(NULL, NULL, NULL, &alg, p8inf) && OBJ_obj2nid(alg->algorithm) == ctx->desc->evp_type) key = key_from_pkcs8(p8inf, PROV_XOR_LIBCTX_OF(ctx->provctx), NULL); PKCS8_PRIV_KEY_INFO_free(p8inf); return key; } static XORKEY *xor_d2i_PUBKEY(XORKEY **a, const unsigned char **pp, long length) { XORKEY *key = NULL; X509_PUBKEY *xpk; xpk = xorx_d2i_X509_PUBKEY_INTERNAL(pp, length, NULL); key = xor_key_from_x509pubkey(xpk, NULL, NULL); if (key == NULL) goto err_exit; if (a != NULL) { xor_freekey(*a); *a = key; } err_exit: X509_PUBKEY_free(xpk); return key; } /* ---------------------------------------------------------------------- */ static OSSL_FUNC_decoder_freectx_fn der2key_freectx; static OSSL_FUNC_decoder_decode_fn xor_der2key_decode; static OSSL_FUNC_decoder_export_object_fn der2key_export_object; static struct der2key_ctx_st * der2key_newctx(void *provctx, struct keytype_desc_st *desc, const char* tls_name) { struct der2key_ctx_st *ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx != NULL) { ctx->provctx = provctx; ctx->desc = desc; if (desc->evp_type == 0) { ctx->desc->evp_type = OBJ_sn2nid(tls_name); } } return ctx; } static void der2key_freectx(void *vctx) { struct der2key_ctx_st *ctx = vctx; OPENSSL_free(ctx); } static int der2key_check_selection(int selection, const struct keytype_desc_st *desc) { /* * The selections are kinda sorta "levels", i.e. each selection given * here is assumed to include those following. */ int checks[] = { OSSL_KEYMGMT_SELECT_PRIVATE_KEY, OSSL_KEYMGMT_SELECT_PUBLIC_KEY, OSSL_KEYMGMT_SELECT_ALL_PARAMETERS }; size_t i; /* The decoder implementations made here support guessing */ if (selection == 0) return 1; for (i = 0; i < OSSL_NELEM(checks); i++) { int check1 = (selection & checks[i]) != 0; int check2 = (desc->selection_mask & checks[i]) != 0; /* * If the caller asked for the currently checked bit(s), return * whether the decoder description says it's supported. */ if (check1) return check2; } /* This should be dead code, but just to be safe... */ return 0; } static int xor_der2key_decode(void *vctx, OSSL_CORE_BIO *cin, int selection, OSSL_CALLBACK *data_cb, void *data_cbarg, OSSL_PASSPHRASE_CALLBACK *pw_cb, void *pw_cbarg) { struct der2key_ctx_st *ctx = vctx; unsigned char *der = NULL; const unsigned char *derp; long der_len = 0; void *key = NULL; int ok = 0; ctx->selection = selection; /* * The caller is allowed to specify 0 as a selection mark, to have the * structure and key type guessed. For type-specific structures, this * is not recommended, as some structures are very similar. * Note that 0 isn't the same as OSSL_KEYMGMT_SELECT_ALL, as the latter * signifies a private key structure, where everything else is assumed * to be present as well. */ if (selection == 0) selection = ctx->desc->selection_mask; if ((selection & ctx->desc->selection_mask) == 0) { ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_INVALID_ARGUMENT); return 0; } ok = xor_read_der(ctx->provctx, cin, &der, &der_len); if (!ok) goto next; ok = 0; /* Assume that we fail */ if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) { derp = der; if (ctx->desc->d2i_PKCS8 != NULL) { key = ctx->desc->d2i_PKCS8(NULL, &derp, der_len, ctx); if (ctx->flag_fatal) goto end; } else if (ctx->desc->d2i_private_key != NULL) { key = ctx->desc->d2i_private_key(NULL, &derp, der_len); } if (key == NULL && ctx->selection != 0) goto next; } if (key == NULL && (selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) { derp = der; if (ctx->desc->d2i_PUBKEY != NULL) key = ctx->desc->d2i_PUBKEY(NULL, &derp, der_len); else key = ctx->desc->d2i_public_key(NULL, &derp, der_len); if (key == NULL && ctx->selection != 0) goto next; } if (key == NULL && (selection & OSSL_KEYMGMT_SELECT_ALL_PARAMETERS) != 0) { derp = der; if (ctx->desc->d2i_key_params != NULL) key = ctx->desc->d2i_key_params(NULL, &derp, der_len); if (key == NULL && ctx->selection != 0) goto next; } /* * Last minute check to see if this was the correct type of key. This * should never lead to a fatal error, i.e. the decoding itself was * correct, it was just an unexpected key type. This is generally for * classes of key types that have subtle variants, like RSA-PSS keys as * opposed to plain RSA keys. */ if (key != NULL && ctx->desc->check_key != NULL && !ctx->desc->check_key(key, ctx)) { ctx->desc->free_key(key); key = NULL; } if (key != NULL && ctx->desc->adjust_key != NULL) ctx->desc->adjust_key(key, ctx); next: /* * Indicated that we successfully decoded something, or not at all. * Ending up "empty handed" is not an error. */ ok = 1; /* * We free memory here so it's not held up during the callback, because * we know the process is recursive and the allocated chunks of memory * add up. */ OPENSSL_free(der); der = NULL; if (key != NULL) { OSSL_PARAM params[4]; int object_type = OSSL_OBJECT_PKEY; params[0] = OSSL_PARAM_construct_int(OSSL_OBJECT_PARAM_TYPE, &object_type); params[1] = OSSL_PARAM_construct_utf8_string(OSSL_OBJECT_PARAM_DATA_TYPE, (char *)ctx->desc->keytype_name, 0); /* The address of the key becomes the octet string */ params[2] = OSSL_PARAM_construct_octet_string(OSSL_OBJECT_PARAM_REFERENCE, &key, sizeof(key)); params[3] = OSSL_PARAM_construct_end(); ok = data_cb(params, data_cbarg); } end: ctx->desc->free_key(key); OPENSSL_free(der); return ok; } static int der2key_export_object(void *vctx, const void *reference, size_t reference_sz, OSSL_CALLBACK *export_cb, void *export_cbarg) { struct der2key_ctx_st *ctx = vctx; OSSL_FUNC_keymgmt_export_fn *export = xor_prov_get_keymgmt_export(ctx->desc->fns); void *keydata; if (reference_sz == sizeof(keydata) && export != NULL) { /* The contents of the reference is the address to our object */ keydata = *(void **)reference; return export(keydata, ctx->selection, export_cb, export_cbarg); } return 0; } /* ---------------------------------------------------------------------- */ static void *xorx_d2i_PKCS8(void **key, const unsigned char **der, long der_len, struct der2key_ctx_st *ctx) { return xor_der2key_decode_p8(der, der_len, ctx, (key_from_pkcs8_t *)xor_key_from_pkcs8); } static void xorx_key_adjust(void *key, struct der2key_ctx_st *ctx) { } /* ---------------------------------------------------------------------- */ #define DO_PrivateKeyInfo(keytype) \ "PrivateKeyInfo", 0, \ ( OSSL_KEYMGMT_SELECT_PRIVATE_KEY ), \ NULL, \ NULL, \ NULL, \ xorx_d2i_PKCS8, \ NULL, \ NULL, \ xorx_key_adjust, \ (free_key_fn *)xor_freekey #define DO_SubjectPublicKeyInfo(keytype) \ "SubjectPublicKeyInfo", 0, \ ( OSSL_KEYMGMT_SELECT_PUBLIC_KEY ), \ NULL, \ NULL, \ NULL, \ NULL, \ (d2i_of_void *)xor_d2i_PUBKEY, \ NULL, \ xorx_key_adjust, \ (free_key_fn *)xor_freekey /* * MAKE_DECODER is the single driver for creating OSSL_DISPATCH tables. * It takes the following arguments: * * keytype_name The implementation key type as a string. * keytype The implementation key type. This must correspond exactly * to our existing keymgmt keytype names... in other words, * there must exist an ossl_##keytype##_keymgmt_functions. * type The type name for the set of functions that implement the * decoder for the key type. This isn't necessarily the same * as keytype. For example, the key types ed25519, ed448, * x25519 and x448 are all handled by the same functions with * the common type name ecx. * kind The kind of support to implement. This translates into * the DO_##kind macros above, to populate the keytype_desc_st * structure. */ #define MAKE_DECODER(keytype_name, keytype, type, kind) \ static struct keytype_desc_st kind##_##keytype##_desc = \ { keytype_name, xor_##keytype##_keymgmt_functions, \ DO_##kind(keytype) }; \ \ static OSSL_FUNC_decoder_newctx_fn kind##_der2##keytype##_newctx; \ \ static void *kind##_der2##keytype##_newctx(void *provctx) \ { \ return der2key_newctx(provctx, &kind##_##keytype##_desc, keytype_name );\ } \ static int kind##_der2##keytype##_does_selection(void *provctx, \ int selection) \ { \ return der2key_check_selection(selection, \ &kind##_##keytype##_desc); \ } \ static const OSSL_DISPATCH \ xor_##kind##_der_to_##keytype##_decoder_functions[] = { \ { OSSL_FUNC_DECODER_NEWCTX, \ (void (*)(void))kind##_der2##keytype##_newctx }, \ { OSSL_FUNC_DECODER_FREECTX, \ (void (*)(void))der2key_freectx }, \ { OSSL_FUNC_DECODER_DOES_SELECTION, \ (void (*)(void))kind##_der2##keytype##_does_selection }, \ { OSSL_FUNC_DECODER_DECODE, \ (void (*)(void))xor_der2key_decode }, \ { OSSL_FUNC_DECODER_EXPORT_OBJECT, \ (void (*)(void))der2key_export_object }, \ OSSL_DISPATCH_END \ } MAKE_DECODER(XORSIGALG_NAME, xorhmacsig, xor, PrivateKeyInfo); MAKE_DECODER(XORSIGALG_NAME, xorhmacsig, xor, SubjectPublicKeyInfo); MAKE_DECODER(XORSIGALG_HASH_NAME, xorhmacsha2sig, xor, PrivateKeyInfo); MAKE_DECODER(XORSIGALG_HASH_NAME, xorhmacsha2sig, xor, SubjectPublicKeyInfo); static const OSSL_ALGORITHM tls_prov_decoder[] = { #define DECODER_PROVIDER "tls-provider" #define DECODER_STRUCTURE_SubjectPublicKeyInfo "SubjectPublicKeyInfo" #define DECODER_STRUCTURE_PrivateKeyInfo "PrivateKeyInfo" /* Arguments are prefixed with '_' to avoid build breaks on certain platforms */ /* * Obviously this is not FIPS approved, but in order to test in conjunction * with the FIPS provider we pretend that it is. */ #define DECODER(_name, _input, _output) \ { _name, \ "provider=" DECODER_PROVIDER ",fips=yes,input=" #_input, \ (xor_##_input##_to_##_output##_decoder_functions) } #define DECODER_w_structure(_name, _input, _structure, _output) \ { _name, \ "provider=" DECODER_PROVIDER ",fips=yes,input=" #_input \ ",structure=" DECODER_STRUCTURE_##_structure, \ (xor_##_structure##_##_input##_to_##_output##_decoder_functions) } DECODER_w_structure(XORSIGALG_NAME, der, PrivateKeyInfo, xorhmacsig), DECODER_w_structure(XORSIGALG_NAME, der, SubjectPublicKeyInfo, xorhmacsig), DECODER_w_structure(XORSIGALG_HASH_NAME, der, PrivateKeyInfo, xorhmacsha2sig), DECODER_w_structure(XORSIGALG_HASH_NAME, der, SubjectPublicKeyInfo, xorhmacsha2sig), #undef DECODER_PROVIDER { NULL, NULL, NULL } }; #define OSSL_MAX_NAME_SIZE 50 #define OSSL_MAX_PROPQUERY_SIZE 256 /* Property query strings */ static OSSL_FUNC_signature_newctx_fn xor_sig_newctx; static OSSL_FUNC_signature_sign_init_fn xor_sig_sign_init; static OSSL_FUNC_signature_verify_init_fn xor_sig_verify_init; static OSSL_FUNC_signature_sign_fn xor_sig_sign; static OSSL_FUNC_signature_verify_fn xor_sig_verify; static OSSL_FUNC_signature_digest_sign_init_fn xor_sig_digest_sign_init; static OSSL_FUNC_signature_digest_sign_update_fn xor_sig_digest_signverify_update; static OSSL_FUNC_signature_digest_sign_final_fn xor_sig_digest_sign_final; static OSSL_FUNC_signature_digest_verify_init_fn xor_sig_digest_verify_init; static OSSL_FUNC_signature_digest_verify_update_fn xor_sig_digest_signverify_update; static OSSL_FUNC_signature_digest_verify_final_fn xor_sig_digest_verify_final; static OSSL_FUNC_signature_freectx_fn xor_sig_freectx; static OSSL_FUNC_signature_dupctx_fn xor_sig_dupctx; static OSSL_FUNC_signature_get_ctx_params_fn xor_sig_get_ctx_params; static OSSL_FUNC_signature_gettable_ctx_params_fn xor_sig_gettable_ctx_params; static OSSL_FUNC_signature_set_ctx_params_fn xor_sig_set_ctx_params; static OSSL_FUNC_signature_settable_ctx_params_fn xor_sig_settable_ctx_params; static OSSL_FUNC_signature_get_ctx_md_params_fn xor_sig_get_ctx_md_params; static OSSL_FUNC_signature_gettable_ctx_md_params_fn xor_sig_gettable_ctx_md_params; static OSSL_FUNC_signature_set_ctx_md_params_fn xor_sig_set_ctx_md_params; static OSSL_FUNC_signature_settable_ctx_md_params_fn xor_sig_settable_ctx_md_params; static int xor_get_aid(unsigned char** oidbuf, const char *tls_name) { X509_ALGOR *algor = X509_ALGOR_new(); int aidlen = 0; X509_ALGOR_set0(algor, OBJ_txt2obj(tls_name, 0), V_ASN1_UNDEF, NULL); aidlen = i2d_X509_ALGOR(algor, oidbuf); X509_ALGOR_free(algor); return(aidlen); } /* * What's passed as an actual key is defined by the KEYMGMT interface. */ typedef struct { OSSL_LIB_CTX *libctx; char *propq; XORKEY *sig; /* * Flag to determine if the hash function can be changed (1) or not (0) * Because it's dangerous to change during a DigestSign or DigestVerify * operation, this flag is cleared by their Init function, and set again * by their Final function. */ unsigned int flag_allow_md : 1; char mdname[OSSL_MAX_NAME_SIZE]; /* The Algorithm Identifier of the combined signature algorithm */ unsigned char *aid; size_t aid_len; /* main digest */ EVP_MD *md; EVP_MD_CTX *mdctx; int operation; } PROV_XORSIG_CTX; static void *xor_sig_newctx(void *provctx, const char *propq) { PROV_XORSIG_CTX *pxor_sigctx; pxor_sigctx = OPENSSL_zalloc(sizeof(PROV_XORSIG_CTX)); if (pxor_sigctx == NULL) return NULL; pxor_sigctx->libctx = ((PROV_XOR_CTX*)provctx)->libctx; pxor_sigctx->flag_allow_md = 0; if (propq != NULL && (pxor_sigctx->propq = OPENSSL_strdup(propq)) == NULL) { OPENSSL_free(pxor_sigctx); pxor_sigctx = NULL; ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE); } return pxor_sigctx; } static int xor_sig_setup_md(PROV_XORSIG_CTX *ctx, const char *mdname, const char *mdprops) { EVP_MD *md; if (mdprops == NULL) mdprops = ctx->propq; md = EVP_MD_fetch(ctx->libctx, mdname, mdprops); if ((md == NULL) || (EVP_MD_nid(md)==NID_undef)) { if (md == NULL) ERR_raise_data(ERR_LIB_USER, XORPROV_R_INVALID_DIGEST, "%s could not be fetched", mdname); EVP_MD_free(md); return 0; } EVP_MD_CTX_free(ctx->mdctx); ctx->mdctx = NULL; EVP_MD_free(ctx->md); ctx->md = NULL; OPENSSL_free(ctx->aid); ctx->aid = NULL; ctx->aid_len = xor_get_aid(&(ctx->aid), ctx->sig->tls_name); ctx->mdctx = NULL; ctx->md = md; OPENSSL_strlcpy(ctx->mdname, mdname, sizeof(ctx->mdname)); return 1; } static int xor_sig_signverify_init(void *vpxor_sigctx, void *vxorsig, int operation) { PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx; if (pxor_sigctx == NULL || vxorsig == NULL) return 0; xor_freekey(pxor_sigctx->sig); if (!xor_key_up_ref(vxorsig)) return 0; pxor_sigctx->sig = vxorsig; pxor_sigctx->operation = operation; if ((operation==EVP_PKEY_OP_SIGN && pxor_sigctx->sig == NULL) || (operation==EVP_PKEY_OP_VERIFY && pxor_sigctx->sig == NULL)) { ERR_raise(ERR_LIB_USER, XORPROV_R_INVALID_KEY); return 0; } return 1; } static int xor_sig_sign_init(void *vpxor_sigctx, void *vxorsig, const OSSL_PARAM params[]) { return xor_sig_signverify_init(vpxor_sigctx, vxorsig, EVP_PKEY_OP_SIGN); } static int xor_sig_verify_init(void *vpxor_sigctx, void *vxorsig, const OSSL_PARAM params[]) { return xor_sig_signverify_init(vpxor_sigctx, vxorsig, EVP_PKEY_OP_VERIFY); } static int xor_sig_sign(void *vpxor_sigctx, unsigned char *sig, size_t *siglen, size_t sigsize, const unsigned char *tbs, size_t tbslen) { PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx; XORKEY *xorkey = pxor_sigctx->sig; size_t max_sig_len = EVP_MAX_MD_SIZE; size_t xor_sig_len = 0; int rv = 0; if (xorkey == NULL || !xorkey->hasprivkey) { ERR_raise(ERR_LIB_USER, XORPROV_R_NO_PRIVATE_KEY); return rv; } if (sig == NULL) { *siglen = max_sig_len; return 1; } if (*siglen < max_sig_len) { ERR_raise(ERR_LIB_USER, XORPROV_R_BUFFER_LENGTH_WRONG); return rv; } /* * create HMAC using XORKEY as key and hash as data: * No real crypto, just for test, don't do this at home! */ if (!EVP_Q_mac(pxor_sigctx->libctx, "HMAC", NULL, "sha1", NULL, xorkey->privkey, XOR_KEY_SIZE, tbs, tbslen, &sig[0], EVP_MAX_MD_SIZE, &xor_sig_len)) { ERR_raise(ERR_LIB_USER, XORPROV_R_SIGNING_FAILED); goto endsign; } *siglen = xor_sig_len; rv = 1; /* success */ endsign: return rv; } static int xor_sig_verify(void *vpxor_sigctx, const unsigned char *sig, size_t siglen, const unsigned char *tbs, size_t tbslen) { PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx; XORKEY *xorkey = pxor_sigctx->sig; unsigned char resignature[EVP_MAX_MD_SIZE]; size_t resiglen; int i; if (xorkey == NULL || sig == NULL || tbs == NULL) { ERR_raise(ERR_LIB_USER, XORPROV_R_WRONG_PARAMETERS); return 0; } /* * This is no real verify: just re-sign and compare: * Don't do this at home! Not fit for real use! */ /* First re-create private key from public key: */ for (i = 0; i < XOR_KEY_SIZE; i++) xorkey->privkey[i] = xorkey->pubkey[i] ^ private_constant[i]; /* Now re-create signature */ if (!EVP_Q_mac(pxor_sigctx->libctx, "HMAC", NULL, "sha1", NULL, xorkey->privkey, XOR_KEY_SIZE, tbs, tbslen, &resignature[0], EVP_MAX_MD_SIZE, &resiglen)) { ERR_raise(ERR_LIB_USER, XORPROV_R_VERIFY_ERROR); return 0; } /* Now compare with signature passed */ if (siglen != resiglen || memcmp(resignature, sig, siglen) != 0) { ERR_raise(ERR_LIB_USER, XORPROV_R_VERIFY_ERROR); return 0; } return 1; } static int xor_sig_digest_signverify_init(void *vpxor_sigctx, const char *mdname, void *vxorsig, int operation) { PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx; char *rmdname = (char *)mdname; if (rmdname == NULL) rmdname = "sha256"; pxor_sigctx->flag_allow_md = 0; if (!xor_sig_signverify_init(vpxor_sigctx, vxorsig, operation)) return 0; if (!xor_sig_setup_md(pxor_sigctx, rmdname, NULL)) return 0; pxor_sigctx->mdctx = EVP_MD_CTX_new(); if (pxor_sigctx->mdctx == NULL) goto error; if (!EVP_DigestInit_ex(pxor_sigctx->mdctx, pxor_sigctx->md, NULL)) goto error; return 1; error: EVP_MD_CTX_free(pxor_sigctx->mdctx); EVP_MD_free(pxor_sigctx->md); pxor_sigctx->mdctx = NULL; pxor_sigctx->md = NULL; return 0; } static int xor_sig_digest_sign_init(void *vpxor_sigctx, const char *mdname, void *vxorsig, const OSSL_PARAM params[]) { return xor_sig_digest_signverify_init(vpxor_sigctx, mdname, vxorsig, EVP_PKEY_OP_SIGN); } static int xor_sig_digest_verify_init(void *vpxor_sigctx, const char *mdname, void *vxorsig, const OSSL_PARAM params[]) { return xor_sig_digest_signverify_init(vpxor_sigctx, mdname, vxorsig, EVP_PKEY_OP_VERIFY); } int xor_sig_digest_signverify_update(void *vpxor_sigctx, const unsigned char *data, size_t datalen) { PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx; if (pxor_sigctx == NULL || pxor_sigctx->mdctx == NULL) return 0; return EVP_DigestUpdate(pxor_sigctx->mdctx, data, datalen); } int xor_sig_digest_sign_final(void *vpxor_sigctx, unsigned char *sig, size_t *siglen, size_t sigsize) { PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx; unsigned char digest[EVP_MAX_MD_SIZE]; unsigned int dlen = 0; if (sig != NULL) { if (pxor_sigctx == NULL || pxor_sigctx->mdctx == NULL) return 0; if (!EVP_DigestFinal_ex(pxor_sigctx->mdctx, digest, &dlen)) return 0; pxor_sigctx->flag_allow_md = 1; } return xor_sig_sign(vpxor_sigctx, sig, siglen, sigsize, digest, (size_t)dlen); } int xor_sig_digest_verify_final(void *vpxor_sigctx, const unsigned char *sig, size_t siglen) { PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx; unsigned char digest[EVP_MAX_MD_SIZE]; unsigned int dlen = 0; if (pxor_sigctx == NULL || pxor_sigctx->mdctx == NULL) return 0; if (!EVP_DigestFinal_ex(pxor_sigctx->mdctx, digest, &dlen)) return 0; pxor_sigctx->flag_allow_md = 1; return xor_sig_verify(vpxor_sigctx, sig, siglen, digest, (size_t)dlen); } static void xor_sig_freectx(void *vpxor_sigctx) { PROV_XORSIG_CTX *ctx = (PROV_XORSIG_CTX *)vpxor_sigctx; OPENSSL_free(ctx->propq); EVP_MD_CTX_free(ctx->mdctx); EVP_MD_free(ctx->md); ctx->propq = NULL; ctx->mdctx = NULL; ctx->md = NULL; xor_freekey(ctx->sig); ctx->sig = NULL; OPENSSL_free(ctx->aid); OPENSSL_free(ctx); } static void *xor_sig_dupctx(void *vpxor_sigctx) { PROV_XORSIG_CTX *srcctx = (PROV_XORSIG_CTX *)vpxor_sigctx; PROV_XORSIG_CTX *dstctx; dstctx = OPENSSL_zalloc(sizeof(*srcctx)); if (dstctx == NULL) return NULL; *dstctx = *srcctx; dstctx->sig = NULL; dstctx->md = NULL; dstctx->mdctx = NULL; dstctx->aid = NULL; if ((srcctx->sig != NULL) && !xor_key_up_ref(srcctx->sig)) goto err; dstctx->sig = srcctx->sig; if (srcctx->md != NULL && !EVP_MD_up_ref(srcctx->md)) goto err; dstctx->md = srcctx->md; if (srcctx->mdctx != NULL) { dstctx->mdctx = EVP_MD_CTX_new(); if (dstctx->mdctx == NULL || !EVP_MD_CTX_copy_ex(dstctx->mdctx, srcctx->mdctx)) goto err; } return dstctx; err: xor_sig_freectx(dstctx); return NULL; } static int xor_sig_get_ctx_params(void *vpxor_sigctx, OSSL_PARAM *params) { PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx; OSSL_PARAM *p; if (pxor_sigctx == NULL || params == NULL) return 0; p = OSSL_PARAM_locate(params, OSSL_SIGNATURE_PARAM_ALGORITHM_ID); if (pxor_sigctx->aid == NULL) pxor_sigctx->aid_len = xor_get_aid(&(pxor_sigctx->aid), pxor_sigctx->sig->tls_name); if (p != NULL && !OSSL_PARAM_set_octet_string(p, pxor_sigctx->aid, pxor_sigctx->aid_len)) return 0; p = OSSL_PARAM_locate(params, OSSL_SIGNATURE_PARAM_DIGEST); if (p != NULL && !OSSL_PARAM_set_utf8_string(p, pxor_sigctx->mdname)) return 0; return 1; } static const OSSL_PARAM known_gettable_ctx_params[] = { OSSL_PARAM_octet_string(OSSL_SIGNATURE_PARAM_ALGORITHM_ID, NULL, 0), OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_DIGEST, NULL, 0), OSSL_PARAM_END }; static const OSSL_PARAM *xor_sig_gettable_ctx_params(ossl_unused void *vpxor_sigctx, ossl_unused void *vctx) { return known_gettable_ctx_params; } static int xor_sig_set_ctx_params(void *vpxor_sigctx, const OSSL_PARAM params[]) { PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx; const OSSL_PARAM *p; if (pxor_sigctx == NULL || params == NULL) return 0; p = OSSL_PARAM_locate_const(params, OSSL_SIGNATURE_PARAM_DIGEST); /* Not allowed during certain operations */ if (p != NULL && !pxor_sigctx->flag_allow_md) return 0; if (p != NULL) { char mdname[OSSL_MAX_NAME_SIZE] = "", *pmdname = mdname; char mdprops[OSSL_MAX_PROPQUERY_SIZE] = "", *pmdprops = mdprops; const OSSL_PARAM *propsp = OSSL_PARAM_locate_const(params, OSSL_SIGNATURE_PARAM_PROPERTIES); if (!OSSL_PARAM_get_utf8_string(p, &pmdname, sizeof(mdname))) return 0; if (propsp != NULL && !OSSL_PARAM_get_utf8_string(propsp, &pmdprops, sizeof(mdprops))) return 0; if (!xor_sig_setup_md(pxor_sigctx, mdname, mdprops)) return 0; } return 1; } static const OSSL_PARAM known_settable_ctx_params[] = { OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_DIGEST, NULL, 0), OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_PROPERTIES, NULL, 0), OSSL_PARAM_END }; static const OSSL_PARAM *xor_sig_settable_ctx_params(ossl_unused void *vpsm2ctx, ossl_unused void *provctx) { return known_settable_ctx_params; } static int xor_sig_get_ctx_md_params(void *vpxor_sigctx, OSSL_PARAM *params) { PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx; if (pxor_sigctx->mdctx == NULL) return 0; return EVP_MD_CTX_get_params(pxor_sigctx->mdctx, params); } static const OSSL_PARAM *xor_sig_gettable_ctx_md_params(void *vpxor_sigctx) { PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx; if (pxor_sigctx->md == NULL) return 0; return EVP_MD_gettable_ctx_params(pxor_sigctx->md); } static int xor_sig_set_ctx_md_params(void *vpxor_sigctx, const OSSL_PARAM params[]) { PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx; if (pxor_sigctx->mdctx == NULL) return 0; return EVP_MD_CTX_set_params(pxor_sigctx->mdctx, params); } static const OSSL_PARAM *xor_sig_settable_ctx_md_params(void *vpxor_sigctx) { PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx; if (pxor_sigctx->md == NULL) return 0; return EVP_MD_settable_ctx_params(pxor_sigctx->md); } static const OSSL_DISPATCH xor_signature_functions[] = { { OSSL_FUNC_SIGNATURE_NEWCTX, (void (*)(void))xor_sig_newctx }, { OSSL_FUNC_SIGNATURE_SIGN_INIT, (void (*)(void))xor_sig_sign_init }, { OSSL_FUNC_SIGNATURE_SIGN, (void (*)(void))xor_sig_sign }, { OSSL_FUNC_SIGNATURE_VERIFY_INIT, (void (*)(void))xor_sig_verify_init }, { OSSL_FUNC_SIGNATURE_VERIFY, (void (*)(void))xor_sig_verify }, { OSSL_FUNC_SIGNATURE_DIGEST_SIGN_INIT, (void (*)(void))xor_sig_digest_sign_init }, { OSSL_FUNC_SIGNATURE_DIGEST_SIGN_UPDATE, (void (*)(void))xor_sig_digest_signverify_update }, { OSSL_FUNC_SIGNATURE_DIGEST_SIGN_FINAL, (void (*)(void))xor_sig_digest_sign_final }, { OSSL_FUNC_SIGNATURE_DIGEST_VERIFY_INIT, (void (*)(void))xor_sig_digest_verify_init }, { OSSL_FUNC_SIGNATURE_DIGEST_VERIFY_UPDATE, (void (*)(void))xor_sig_digest_signverify_update }, { OSSL_FUNC_SIGNATURE_DIGEST_VERIFY_FINAL, (void (*)(void))xor_sig_digest_verify_final }, { OSSL_FUNC_SIGNATURE_FREECTX, (void (*)(void))xor_sig_freectx }, { OSSL_FUNC_SIGNATURE_DUPCTX, (void (*)(void))xor_sig_dupctx }, { OSSL_FUNC_SIGNATURE_GET_CTX_PARAMS, (void (*)(void))xor_sig_get_ctx_params }, { OSSL_FUNC_SIGNATURE_GETTABLE_CTX_PARAMS, (void (*)(void))xor_sig_gettable_ctx_params }, { OSSL_FUNC_SIGNATURE_SET_CTX_PARAMS, (void (*)(void))xor_sig_set_ctx_params }, { OSSL_FUNC_SIGNATURE_SETTABLE_CTX_PARAMS, (void (*)(void))xor_sig_settable_ctx_params }, { OSSL_FUNC_SIGNATURE_GET_CTX_MD_PARAMS, (void (*)(void))xor_sig_get_ctx_md_params }, { OSSL_FUNC_SIGNATURE_GETTABLE_CTX_MD_PARAMS, (void (*)(void))xor_sig_gettable_ctx_md_params }, { OSSL_FUNC_SIGNATURE_SET_CTX_MD_PARAMS, (void (*)(void))xor_sig_set_ctx_md_params }, { OSSL_FUNC_SIGNATURE_SETTABLE_CTX_MD_PARAMS, (void (*)(void))xor_sig_settable_ctx_md_params }, OSSL_DISPATCH_END }; static const OSSL_ALGORITHM tls_prov_signature[] = { /* * Obviously this is not FIPS approved, but in order to test in conjunction * with the FIPS provider we pretend that it is. */ { XORSIGALG_NAME, "provider=tls-provider,fips=yes", xor_signature_functions }, { XORSIGALG_HASH_NAME, "provider=tls-provider,fips=yes", xor_signature_functions }, { XORSIGALG12_NAME, "provider=tls-provider,fips=yes", xor_signature_functions }, { NULL, NULL, NULL } }; static const OSSL_ALGORITHM *tls_prov_query(void *provctx, int operation_id, int *no_cache) { *no_cache = 0; switch (operation_id) { case OSSL_OP_KEYMGMT: return tls_prov_keymgmt; case OSSL_OP_KEYEXCH: return tls_prov_keyexch; case OSSL_OP_KEM: return tls_prov_kem; case OSSL_OP_ENCODER: return tls_prov_encoder; case OSSL_OP_DECODER: return tls_prov_decoder; case OSSL_OP_SIGNATURE: return tls_prov_signature; } return NULL; } static void tls_prov_teardown(void *provctx) { int i; PROV_XOR_CTX *pctx = (PROV_XOR_CTX*)provctx; OSSL_LIB_CTX_free(pctx->libctx); for (i = 0; i < NUM_DUMMY_GROUPS; i++) { OPENSSL_free(dummy_group_names[i]); dummy_group_names[i] = NULL; } OPENSSL_free(pctx); } /* Functions we provide to the core */ static const OSSL_DISPATCH tls_prov_dispatch_table[] = { { OSSL_FUNC_PROVIDER_TEARDOWN, (void (*)(void))tls_prov_teardown }, { OSSL_FUNC_PROVIDER_QUERY_OPERATION, (void (*)(void))tls_prov_query }, { OSSL_FUNC_PROVIDER_GET_CAPABILITIES, (void (*)(void))tls_prov_get_capabilities }, OSSL_DISPATCH_END }; static unsigned int randomize_tls_alg_id(OSSL_LIB_CTX *libctx) { /* * Randomise the id we're going to use to ensure we don't interoperate * with anything but ourselves. */ unsigned int id; static unsigned int mem[10] = { 0 }; static int in_mem = 0; int i; retry: if (RAND_bytes_ex(libctx, (unsigned char *)&id, sizeof(id), 0) <= 0) return 0; /* * Ensure id is within the IANA Reserved for private use range * (65024-65279) */ id %= 65279 - 65024; id += 65024; /* Ensure we did not already issue this id */ for (i = 0; i < in_mem; i++) if (mem[i] == id) goto retry; /* Add this id to the list of ids issued by this function */ mem[in_mem++] = id; return id; } int tls_provider_init(const OSSL_CORE_HANDLE *handle, const OSSL_DISPATCH *in, const OSSL_DISPATCH **out, void **provctx) { OSSL_LIB_CTX *libctx = OSSL_LIB_CTX_new_from_dispatch(handle, in); OSSL_FUNC_core_obj_create_fn *c_obj_create= NULL; OSSL_FUNC_core_obj_add_sigid_fn *c_obj_add_sigid= NULL; PROV_XOR_CTX *prov_ctx = xor_newprovctx(libctx); if (libctx == NULL || prov_ctx == NULL) return 0; *provctx = prov_ctx; /* * Randomise the group_id and code_points we're going to use to ensure we * don't interoperate with anything but ourselves. */ xor_group.group_id = randomize_tls_alg_id(libctx); xor_kemgroup.group_id = randomize_tls_alg_id(libctx); xor_sigalg.code_point = randomize_tls_alg_id(libctx); xor_sigalg_hash.code_point = randomize_tls_alg_id(libctx); /* Retrieve registration functions */ for (; in->function_id != 0; in++) { switch (in->function_id) { case OSSL_FUNC_CORE_OBJ_CREATE: c_obj_create = OSSL_FUNC_core_obj_create(in); break; case OSSL_FUNC_CORE_OBJ_ADD_SIGID: c_obj_add_sigid = OSSL_FUNC_core_obj_add_sigid(in); break; /* Just ignore anything we don't understand */ default: break; } } /* * Register algorithms manually as add_provider_sigalgs is * only called during session establishment -- too late for * key & cert generation... */ if (!c_obj_create(handle, XORSIGALG_OID, XORSIGALG_NAME, XORSIGALG_NAME)) { ERR_raise(ERR_LIB_USER, XORPROV_R_OBJ_CREATE_ERR); return 0; } if (!c_obj_add_sigid(handle, XORSIGALG_OID, "", XORSIGALG_OID)) { ERR_raise(ERR_LIB_USER, XORPROV_R_OBJ_CREATE_ERR); return 0; } if (!c_obj_create(handle, XORSIGALG_HASH_OID, XORSIGALG_HASH_NAME, NULL)) { ERR_raise(ERR_LIB_USER, XORPROV_R_OBJ_CREATE_ERR); return 0; } if (!c_obj_add_sigid(handle, XORSIGALG_HASH_OID, XORSIGALG_HASH, XORSIGALG_HASH_OID)) { ERR_raise(ERR_LIB_USER, XORPROV_R_OBJ_CREATE_ERR); return 0; } *out = tls_prov_dispatch_table; return 1; }