/* * Copyright 2019-2023 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final * Section 4.1. * * The Single Step KDF algorithm is given by: * * Result(0) = empty bit string (i.e., the null string). * For i = 1 to reps, do the following: * Increment counter by 1. * Result(i) = Result(i - 1) || H(counter || Z || FixedInfo). * DKM = LeftmostBits(Result(reps), L)) * * NOTES: * Z is a shared secret required to produce the derived key material. * counter is a 4 byte buffer. * FixedInfo is a bit string containing context specific data. * DKM is the output derived key material. * L is the required size of the DKM. * reps = [L / H_outputBits] * H(x) is the auxiliary function that can be either a hash, HMAC or KMAC. * H_outputBits is the length of the output of the auxiliary function H(x). * * Currently there is not a comprehensive list of test vectors for this * algorithm, especially for H(x) = HMAC and H(x) = KMAC. * Test vectors for H(x) = Hash are indirectly used by CAVS KAS tests. */ #include #include #include #include #include #include #include #include #include #include "internal/cryptlib.h" #include "internal/numbers.h" #include "crypto/evp.h" #include "prov/provider_ctx.h" #include "prov/providercommon.h" #include "prov/implementations.h" #include "prov/provider_util.h" #include "internal/params.h" typedef struct { void *provctx; EVP_MAC_CTX *macctx; /* H(x) = HMAC_hash OR H(x) = KMAC */ PROV_DIGEST digest; /* H(x) = hash(x) */ unsigned char *secret; size_t secret_len; unsigned char *info; size_t info_len; unsigned char *salt; size_t salt_len; size_t out_len; /* optional KMAC parameter */ int is_kmac; } KDF_SSKDF; #define SSKDF_MAX_INLEN (1<<30) #define SSKDF_KMAC128_DEFAULT_SALT_SIZE (168 - 4) #define SSKDF_KMAC256_DEFAULT_SALT_SIZE (136 - 4) /* KMAC uses a Customisation string of 'KDF' */ static const unsigned char kmac_custom_str[] = { 0x4B, 0x44, 0x46 }; static OSSL_FUNC_kdf_newctx_fn sskdf_new; static OSSL_FUNC_kdf_dupctx_fn sskdf_dup; static OSSL_FUNC_kdf_freectx_fn sskdf_free; static OSSL_FUNC_kdf_reset_fn sskdf_reset; static OSSL_FUNC_kdf_derive_fn sskdf_derive; static OSSL_FUNC_kdf_derive_fn x963kdf_derive; static OSSL_FUNC_kdf_settable_ctx_params_fn sskdf_settable_ctx_params; static OSSL_FUNC_kdf_set_ctx_params_fn sskdf_set_ctx_params; static OSSL_FUNC_kdf_gettable_ctx_params_fn sskdf_gettable_ctx_params; static OSSL_FUNC_kdf_get_ctx_params_fn sskdf_get_ctx_params; /* * Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final * Section 4. One-Step Key Derivation using H(x) = hash(x) * Note: X9.63 also uses this code with the only difference being that the * counter is appended to the secret 'z'. * i.e. * result[i] = Hash(counter || z || info) for One Step OR * result[i] = Hash(z || counter || info) for X9.63. */ static int SSKDF_hash_kdm(const EVP_MD *kdf_md, const unsigned char *z, size_t z_len, const unsigned char *info, size_t info_len, unsigned int append_ctr, unsigned char *derived_key, size_t derived_key_len) { int ret = 0, hlen; size_t counter, out_len, len = derived_key_len; unsigned char c[4]; unsigned char mac[EVP_MAX_MD_SIZE]; unsigned char *out = derived_key; EVP_MD_CTX *ctx = NULL, *ctx_init = NULL; if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN || derived_key_len > SSKDF_MAX_INLEN || derived_key_len == 0) return 0; hlen = EVP_MD_get_size(kdf_md); if (hlen <= 0) return 0; out_len = (size_t)hlen; ctx = EVP_MD_CTX_create(); ctx_init = EVP_MD_CTX_create(); if (ctx == NULL || ctx_init == NULL) goto end; if (!EVP_DigestInit(ctx_init, kdf_md)) goto end; for (counter = 1;; counter++) { c[0] = (unsigned char)((counter >> 24) & 0xff); c[1] = (unsigned char)((counter >> 16) & 0xff); c[2] = (unsigned char)((counter >> 8) & 0xff); c[3] = (unsigned char)(counter & 0xff); if (!(EVP_MD_CTX_copy_ex(ctx, ctx_init) && (append_ctr || EVP_DigestUpdate(ctx, c, sizeof(c))) && EVP_DigestUpdate(ctx, z, z_len) && (!append_ctr || EVP_DigestUpdate(ctx, c, sizeof(c))) && EVP_DigestUpdate(ctx, info, info_len))) goto end; if (len >= out_len) { if (!EVP_DigestFinal_ex(ctx, out, NULL)) goto end; out += out_len; len -= out_len; if (len == 0) break; } else { if (!EVP_DigestFinal_ex(ctx, mac, NULL)) goto end; memcpy(out, mac, len); break; } } ret = 1; end: EVP_MD_CTX_destroy(ctx); EVP_MD_CTX_destroy(ctx_init); OPENSSL_cleanse(mac, sizeof(mac)); return ret; } static int kmac_init(EVP_MAC_CTX *ctx, const unsigned char *custom, size_t custom_len, size_t kmac_out_len, size_t derived_key_len, unsigned char **out) { OSSL_PARAM params[2]; /* Only KMAC has custom data - so return if not KMAC */ if (custom == NULL) return 1; params[0] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_CUSTOM, (void *)custom, custom_len); params[1] = OSSL_PARAM_construct_end(); if (!EVP_MAC_CTX_set_params(ctx, params)) return 0; /* By default only do one iteration if kmac_out_len is not specified */ if (kmac_out_len == 0) kmac_out_len = derived_key_len; /* otherwise check the size is valid */ else if (!(kmac_out_len == derived_key_len || kmac_out_len == 20 || kmac_out_len == 28 || kmac_out_len == 32 || kmac_out_len == 48 || kmac_out_len == 64)) return 0; params[0] = OSSL_PARAM_construct_size_t(OSSL_MAC_PARAM_SIZE, &kmac_out_len); if (EVP_MAC_CTX_set_params(ctx, params) <= 0) return 0; /* * For kmac the output buffer can be larger than EVP_MAX_MD_SIZE: so * alloc a buffer for this case. */ if (kmac_out_len > EVP_MAX_MD_SIZE) { *out = OPENSSL_zalloc(kmac_out_len); if (*out == NULL) return 0; } return 1; } /* * Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final * Section 4. One-Step Key Derivation using MAC: i.e either * H(x) = HMAC-hash(salt, x) OR * H(x) = KMAC#(salt, x, outbits, CustomString='KDF') */ static int SSKDF_mac_kdm(EVP_MAC_CTX *ctx_init, const unsigned char *kmac_custom, size_t kmac_custom_len, size_t kmac_out_len, const unsigned char *salt, size_t salt_len, const unsigned char *z, size_t z_len, const unsigned char *info, size_t info_len, unsigned char *derived_key, size_t derived_key_len) { int ret = 0; size_t counter, out_len, len; unsigned char c[4]; unsigned char mac_buf[EVP_MAX_MD_SIZE]; unsigned char *out = derived_key; EVP_MAC_CTX *ctx = NULL; unsigned char *mac = mac_buf, *kmac_buffer = NULL; if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN || derived_key_len > SSKDF_MAX_INLEN || derived_key_len == 0) return 0; if (!kmac_init(ctx_init, kmac_custom, kmac_custom_len, kmac_out_len, derived_key_len, &kmac_buffer)) goto end; if (kmac_buffer != NULL) mac = kmac_buffer; if (!EVP_MAC_init(ctx_init, salt, salt_len, NULL)) goto end; out_len = EVP_MAC_CTX_get_mac_size(ctx_init); /* output size */ if (out_len <= 0 || (mac == mac_buf && out_len > sizeof(mac_buf))) goto end; len = derived_key_len; for (counter = 1;; counter++) { c[0] = (unsigned char)((counter >> 24) & 0xff); c[1] = (unsigned char)((counter >> 16) & 0xff); c[2] = (unsigned char)((counter >> 8) & 0xff); c[3] = (unsigned char)(counter & 0xff); ctx = EVP_MAC_CTX_dup(ctx_init); if (!(ctx != NULL && EVP_MAC_update(ctx, c, sizeof(c)) && EVP_MAC_update(ctx, z, z_len) && EVP_MAC_update(ctx, info, info_len))) goto end; if (len >= out_len) { if (!EVP_MAC_final(ctx, out, NULL, len)) goto end; out += out_len; len -= out_len; if (len == 0) break; } else { if (!EVP_MAC_final(ctx, mac, NULL, out_len)) goto end; memcpy(out, mac, len); break; } EVP_MAC_CTX_free(ctx); ctx = NULL; } ret = 1; end: if (kmac_buffer != NULL) OPENSSL_clear_free(kmac_buffer, kmac_out_len); else OPENSSL_cleanse(mac_buf, sizeof(mac_buf)); EVP_MAC_CTX_free(ctx); return ret; } static void *sskdf_new(void *provctx) { KDF_SSKDF *ctx; if (!ossl_prov_is_running()) return NULL; if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) != NULL) ctx->provctx = provctx; return ctx; } static void sskdf_reset(void *vctx) { KDF_SSKDF *ctx = (KDF_SSKDF *)vctx; void *provctx = ctx->provctx; EVP_MAC_CTX_free(ctx->macctx); ossl_prov_digest_reset(&ctx->digest); OPENSSL_clear_free(ctx->secret, ctx->secret_len); OPENSSL_clear_free(ctx->info, ctx->info_len); OPENSSL_clear_free(ctx->salt, ctx->salt_len); memset(ctx, 0, sizeof(*ctx)); ctx->provctx = provctx; } static void sskdf_free(void *vctx) { KDF_SSKDF *ctx = (KDF_SSKDF *)vctx; if (ctx != NULL) { sskdf_reset(ctx); OPENSSL_free(ctx); } } static void *sskdf_dup(void *vctx) { const KDF_SSKDF *src = (const KDF_SSKDF *)vctx; KDF_SSKDF *dest; dest = sskdf_new(src->provctx); if (dest != NULL) { if (src->macctx != NULL) { dest->macctx = EVP_MAC_CTX_dup(src->macctx); if (dest->macctx == NULL) goto err; } if (!ossl_prov_memdup(src->info, src->info_len, &dest->info, &dest->info_len) || !ossl_prov_memdup(src->salt, src->salt_len, &dest->salt , &dest->salt_len) || !ossl_prov_memdup(src->secret, src->secret_len, &dest->secret, &dest->secret_len) || !ossl_prov_digest_copy(&dest->digest, &src->digest)) goto err; dest->out_len = src->out_len; dest->is_kmac = src->is_kmac; } return dest; err: sskdf_free(dest); return NULL; } static size_t sskdf_size(KDF_SSKDF *ctx) { int len; const EVP_MD *md = NULL; if (ctx->is_kmac) return SIZE_MAX; md = ossl_prov_digest_md(&ctx->digest); if (md == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); return 0; } len = EVP_MD_get_size(md); return (len <= 0) ? 0 : (size_t)len; } static int sskdf_derive(void *vctx, unsigned char *key, size_t keylen, const OSSL_PARAM params[]) { KDF_SSKDF *ctx = (KDF_SSKDF *)vctx; const EVP_MD *md; if (!ossl_prov_is_running() || !sskdf_set_ctx_params(ctx, params)) return 0; if (ctx->secret == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SECRET); return 0; } md = ossl_prov_digest_md(&ctx->digest); if (ctx->macctx != NULL) { /* H(x) = KMAC or H(x) = HMAC */ int ret; const unsigned char *custom = NULL; size_t custom_len = 0; int default_salt_len; EVP_MAC *mac = EVP_MAC_CTX_get0_mac(ctx->macctx); if (EVP_MAC_is_a(mac, OSSL_MAC_NAME_HMAC)) { /* H(x) = HMAC(x, salt, hash) */ if (md == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); return 0; } default_salt_len = EVP_MD_get_size(md); if (default_salt_len <= 0) return 0; } else if (ctx->is_kmac) { /* H(x) = KMACzzz(x, salt, custom) */ custom = kmac_custom_str; custom_len = sizeof(kmac_custom_str); if (EVP_MAC_is_a(mac, OSSL_MAC_NAME_KMAC128)) default_salt_len = SSKDF_KMAC128_DEFAULT_SALT_SIZE; else default_salt_len = SSKDF_KMAC256_DEFAULT_SALT_SIZE; } else { ERR_raise(ERR_LIB_PROV, PROV_R_UNSUPPORTED_MAC_TYPE); return 0; } /* If no salt is set then use a default_salt of zeros */ if (ctx->salt == NULL || ctx->salt_len <= 0) { ctx->salt = OPENSSL_zalloc(default_salt_len); if (ctx->salt == NULL) return 0; ctx->salt_len = default_salt_len; } ret = SSKDF_mac_kdm(ctx->macctx, custom, custom_len, ctx->out_len, ctx->salt, ctx->salt_len, ctx->secret, ctx->secret_len, ctx->info, ctx->info_len, key, keylen); return ret; } else { /* H(x) = hash */ if (md == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); return 0; } return SSKDF_hash_kdm(md, ctx->secret, ctx->secret_len, ctx->info, ctx->info_len, 0, key, keylen); } } static int x963kdf_derive(void *vctx, unsigned char *key, size_t keylen, const OSSL_PARAM params[]) { KDF_SSKDF *ctx = (KDF_SSKDF *)vctx; const EVP_MD *md; if (!ossl_prov_is_running() || !sskdf_set_ctx_params(ctx, params)) return 0; if (ctx->secret == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SECRET); return 0; } if (ctx->macctx != NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_NOT_SUPPORTED); return 0; } /* H(x) = hash */ md = ossl_prov_digest_md(&ctx->digest); if (md == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); return 0; } return SSKDF_hash_kdm(md, ctx->secret, ctx->secret_len, ctx->info, ctx->info_len, 1, key, keylen); } static int sskdf_set_ctx_params(void *vctx, const OSSL_PARAM params[]) { const OSSL_PARAM *p; KDF_SSKDF *ctx = vctx; OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); size_t sz; int r; if (params == NULL) return 1; if (!ossl_prov_macctx_load_from_params(&ctx->macctx, params, NULL, NULL, NULL, libctx)) return 0; if (ctx->macctx != NULL) { if (EVP_MAC_is_a(EVP_MAC_CTX_get0_mac(ctx->macctx), OSSL_MAC_NAME_KMAC128) || EVP_MAC_is_a(EVP_MAC_CTX_get0_mac(ctx->macctx), OSSL_MAC_NAME_KMAC256)) { ctx->is_kmac = 1; } } if (!ossl_prov_digest_load_from_params(&ctx->digest, params, libctx)) return 0; r = ossl_param_get1_octet_string(params, OSSL_KDF_PARAM_SECRET, &ctx->secret, &ctx->secret_len); if (r == -1) r = ossl_param_get1_octet_string(params, OSSL_KDF_PARAM_KEY, &ctx->secret, &ctx->secret_len); if (r == 0) return 0; if (ossl_param_get1_concat_octet_string(params, OSSL_KDF_PARAM_INFO, &ctx->info, &ctx->info_len, 0) == 0) return 0; if (ossl_param_get1_octet_string(params, OSSL_KDF_PARAM_SALT, &ctx->salt, &ctx->salt_len) == 0) return 0; if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_MAC_SIZE)) != NULL) { if (!OSSL_PARAM_get_size_t(p, &sz) || sz == 0) return 0; ctx->out_len = sz; } return 1; } static const OSSL_PARAM *sskdf_settable_ctx_params(ossl_unused void *ctx, ossl_unused void *provctx) { static const OSSL_PARAM known_settable_ctx_params[] = { OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0), OSSL_PARAM_octet_string(OSSL_KDF_PARAM_KEY, NULL, 0), OSSL_PARAM_octet_string(OSSL_KDF_PARAM_INFO, NULL, 0), OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0), OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_MAC, NULL, 0), OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0), OSSL_PARAM_size_t(OSSL_KDF_PARAM_MAC_SIZE, NULL), OSSL_PARAM_END }; return known_settable_ctx_params; } static int sskdf_get_ctx_params(void *vctx, OSSL_PARAM params[]) { KDF_SSKDF *ctx = (KDF_SSKDF *)vctx; OSSL_PARAM *p; if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) return OSSL_PARAM_set_size_t(p, sskdf_size(ctx)); return -2; } static const OSSL_PARAM *sskdf_gettable_ctx_params(ossl_unused void *ctx, ossl_unused void *provctx) { static const OSSL_PARAM known_gettable_ctx_params[] = { OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), OSSL_PARAM_END }; return known_gettable_ctx_params; } const OSSL_DISPATCH ossl_kdf_sskdf_functions[] = { { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))sskdf_new }, { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))sskdf_dup }, { OSSL_FUNC_KDF_FREECTX, (void(*)(void))sskdf_free }, { OSSL_FUNC_KDF_RESET, (void(*)(void))sskdf_reset }, { OSSL_FUNC_KDF_DERIVE, (void(*)(void))sskdf_derive }, { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, (void(*)(void))sskdf_settable_ctx_params }, { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))sskdf_set_ctx_params }, { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, (void(*)(void))sskdf_gettable_ctx_params }, { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))sskdf_get_ctx_params }, OSSL_DISPATCH_END }; const OSSL_DISPATCH ossl_kdf_x963_kdf_functions[] = { { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))sskdf_new }, { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))sskdf_dup }, { OSSL_FUNC_KDF_FREECTX, (void(*)(void))sskdf_free }, { OSSL_FUNC_KDF_RESET, (void(*)(void))sskdf_reset }, { OSSL_FUNC_KDF_DERIVE, (void(*)(void))x963kdf_derive }, { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, (void(*)(void))sskdf_settable_ctx_params }, { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))sskdf_set_ctx_params }, { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, (void(*)(void))sskdf_gettable_ctx_params }, { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))sskdf_get_ctx_params }, OSSL_DISPATCH_END };