/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "internal/numbers.h" #include "internal/safe_math.h" #include #include #include /* For ossl_inline */ OSSL_SAFE_MATH_SIGNED(int, int) /* * The initial number of nodes in the array. */ static const int min_nodes = 4; static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX ? (int)(SIZE_MAX / sizeof(void *)) : INT_MAX; struct stack_st { int num; const void **data; int sorted; int num_alloc; OPENSSL_sk_compfunc comp; }; OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, OPENSSL_sk_compfunc c) { OPENSSL_sk_compfunc old = sk->comp; if (sk->comp != c) sk->sorted = 0; sk->comp = c; return old; } OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) { OPENSSL_STACK *ret; if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) goto err; if (sk == NULL) { ret->num = 0; ret->sorted = 0; ret->comp = NULL; } else { /* direct structure assignment */ *ret = *sk; } if (sk == NULL || sk->num == 0) { /* postpone |ret->data| allocation */ ret->data = NULL; ret->num_alloc = 0; return ret; } /* duplicate |sk->data| content */ ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc); if (ret->data == NULL) goto err; memcpy(ret->data, sk->data, sizeof(void *) * sk->num); return ret; err: OPENSSL_sk_free(ret); return NULL; } OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk, OPENSSL_sk_copyfunc copy_func, OPENSSL_sk_freefunc free_func) { OPENSSL_STACK *ret; int i; if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) goto err; if (sk == NULL) { ret->num = 0; ret->sorted = 0; ret->comp = NULL; } else { /* direct structure assignment */ *ret = *sk; } if (sk == NULL || sk->num == 0) { /* postpone |ret| data allocation */ ret->data = NULL; ret->num_alloc = 0; return ret; } ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes; ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc); if (ret->data == NULL) goto err; for (i = 0; i < ret->num; ++i) { if (sk->data[i] == NULL) continue; if ((ret->data[i] = copy_func(sk->data[i])) == NULL) { while (--i >= 0) if (ret->data[i] != NULL) free_func((void *)ret->data[i]); goto err; } } return ret; err: OPENSSL_sk_free(ret); return NULL; } OPENSSL_STACK *OPENSSL_sk_new_null(void) { return OPENSSL_sk_new_reserve(NULL, 0); } OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c) { return OPENSSL_sk_new_reserve(c, 0); } /* * Calculate the array growth based on the target size. * * The growth factor is a rational number and is defined by a numerator * and a denominator. According to Andrew Koenig in his paper "Why Are * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less * than the golden ratio (1.618...). * * Considering only the Fibonacci ratios less than the golden ratio, the * number of steps from the minimum allocation to integer overflow is: * factor decimal growths * 3/2 1.5 51 * 8/5 1.6 45 * 21/13 1.615... 44 * * All larger factors have the same number of growths. * * 3/2 and 8/5 have nice power of two shifts, so seem like a good choice. */ static ossl_inline int compute_growth(int target, int current) { int err = 0; while (current < target) { if (current >= max_nodes) return 0; current = safe_muldiv_int(current, 8, 5, &err); if (err != 0) return 0; if (current >= max_nodes) current = max_nodes; } return current; } /* internal STACK storage allocation */ static int sk_reserve(OPENSSL_STACK *st, int n, int exact) { const void **tmpdata; int num_alloc; /* Check to see the reservation isn't exceeding the hard limit */ if (n > max_nodes - st->num) { ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); return 0; } /* Figure out the new size */ num_alloc = st->num + n; if (num_alloc < min_nodes) num_alloc = min_nodes; /* If |st->data| allocation was postponed */ if (st->data == NULL) { /* * At this point, |st->num_alloc| and |st->num| are 0; * so |num_alloc| value is |n| or |min_nodes| if greater than |n|. */ if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) return 0; st->num_alloc = num_alloc; return 1; } if (!exact) { if (num_alloc <= st->num_alloc) return 1; num_alloc = compute_growth(num_alloc, st->num_alloc); if (num_alloc == 0) { ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); return 0; } } else if (num_alloc == st->num_alloc) { return 1; } tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc); if (tmpdata == NULL) return 0; st->data = tmpdata; st->num_alloc = num_alloc; return 1; } OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n) { OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK)); if (st == NULL) return NULL; st->comp = c; if (n <= 0) return st; if (!sk_reserve(st, n, 1)) { OPENSSL_sk_free(st); return NULL; } return st; } int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n) { if (st == NULL) { ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (n < 0) return 1; return sk_reserve(st, n, 1); } int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc) { if (st == NULL) { ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (st->num == max_nodes) { ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); return 0; } if (!sk_reserve(st, 1, 0)) return 0; if ((loc >= st->num) || (loc < 0)) { st->data[st->num] = data; } else { memmove(&st->data[loc + 1], &st->data[loc], sizeof(st->data[0]) * (st->num - loc)); st->data[loc] = data; } st->num++; st->sorted = 0; return st->num; } static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc) { const void *ret = st->data[loc]; if (loc != st->num - 1) memmove(&st->data[loc], &st->data[loc + 1], sizeof(st->data[0]) * (st->num - loc - 1)); st->num--; return (void *)ret; } void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p) { int i; if (st == NULL) return NULL; for (i = 0; i < st->num; i++) if (st->data[i] == p) return internal_delete(st, i); return NULL; } void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc) { if (st == NULL || loc < 0 || loc >= st->num) return NULL; return internal_delete(st, loc); } static int internal_find(OPENSSL_STACK *st, const void *data, int ret_val_options, int *pnum_matched) { const void *r; int i, count = 0; int *pnum = pnum_matched; if (st == NULL || st->num == 0) return -1; if (pnum == NULL) pnum = &count; if (st->comp == NULL) { for (i = 0; i < st->num; i++) if (st->data[i] == data) { *pnum = 1; return i; } *pnum = 0; return -1; } if (data == NULL) return -1; if (!st->sorted) { int res = -1; for (i = 0; i < st->num; i++) if (st->comp(&data, st->data + i) == 0) { if (res == -1) res = i; ++*pnum; /* Check if only one result is wanted and exit if so */ if (pnum_matched == NULL) return i; } if (res == -1) *pnum = 0; return res; } if (pnum_matched != NULL) ret_val_options |= OSSL_BSEARCH_FIRST_VALUE_ON_MATCH; r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp, ret_val_options); if (pnum_matched != NULL) { *pnum = 0; if (r != NULL) { const void **p = (const void **)r; while (p < st->data + st->num) { if (st->comp(&data, p) != 0) break; ++*pnum; ++p; } } } return r == NULL ? -1 : (int)((const void **)r - st->data); } int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data) { return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, NULL); } int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data) { return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH, NULL); } int OPENSSL_sk_find_all(OPENSSL_STACK *st, const void *data, int *pnum) { return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, pnum); } int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data) { if (st == NULL) return -1; return OPENSSL_sk_insert(st, data, st->num); } int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data) { return OPENSSL_sk_insert(st, data, 0); } void *OPENSSL_sk_shift(OPENSSL_STACK *st) { if (st == NULL || st->num == 0) return NULL; return internal_delete(st, 0); } void *OPENSSL_sk_pop(OPENSSL_STACK *st) { if (st == NULL || st->num == 0) return NULL; return internal_delete(st, st->num - 1); } void OPENSSL_sk_zero(OPENSSL_STACK *st) { if (st == NULL || st->num == 0) return; memset(st->data, 0, sizeof(*st->data) * st->num); st->num = 0; } void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func) { int i; if (st == NULL) return; for (i = 0; i < st->num; i++) if (st->data[i] != NULL) func((char *)st->data[i]); OPENSSL_sk_free(st); } void OPENSSL_sk_free(OPENSSL_STACK *st) { if (st == NULL) return; OPENSSL_free(st->data); OPENSSL_free(st); } int OPENSSL_sk_num(const OPENSSL_STACK *st) { return st == NULL ? -1 : st->num; } void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i) { if (st == NULL || i < 0 || i >= st->num) return NULL; return (void *)st->data[i]; } void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data) { if (st == NULL) { ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (i < 0 || i >= st->num) { ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT, "i=%d", i); return NULL; } st->data[i] = data; st->sorted = 0; return (void *)st->data[i]; } void OPENSSL_sk_sort(OPENSSL_STACK *st) { if (st != NULL && !st->sorted && st->comp != NULL) { if (st->num > 1) qsort(st->data, st->num, sizeof(void *), st->comp); st->sorted = 1; /* empty or single-element stack is considered sorted */ } } int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st) { return st == NULL ? 1 : st->sorted; }