/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * RSA low level APIs are deprecated for public use, but still ok for * internal use. */ #include "internal/deprecated.h" #include #include #ifndef FIPS_MODULE # include #endif #include #include #include "internal/cryptlib.h" #include "internal/refcount.h" #include "crypto/bn.h" #include "crypto/evp.h" #include "crypto/rsa.h" #include "crypto/security_bits.h" #include "rsa_local.h" static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx); #ifndef FIPS_MODULE RSA *RSA_new(void) { return rsa_new_intern(NULL, NULL); } const RSA_METHOD *RSA_get_method(const RSA *rsa) { return rsa->meth; } int RSA_set_method(RSA *rsa, const RSA_METHOD *meth) { /* * NB: The caller is specifically setting a method, so it's not up to us * to deal with which ENGINE it comes from. */ const RSA_METHOD *mtmp; mtmp = rsa->meth; if (mtmp->finish) mtmp->finish(rsa); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(rsa->engine); rsa->engine = NULL; #endif rsa->meth = meth; if (meth->init) meth->init(rsa); return 1; } RSA *RSA_new_method(ENGINE *engine) { return rsa_new_intern(engine, NULL); } #endif RSA *ossl_rsa_new_with_ctx(OSSL_LIB_CTX *libctx) { return rsa_new_intern(NULL, libctx); } static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx) { RSA *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) return NULL; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB); OPENSSL_free(ret); return NULL; } if (!CRYPTO_NEW_REF(&ret->references, 1)) { CRYPTO_THREAD_lock_free(ret->lock); OPENSSL_free(ret); return NULL; } ret->libctx = libctx; ret->meth = RSA_get_default_method(); #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE) ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW; if (engine) { if (!ENGINE_init(engine)) { ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB); goto err; } ret->engine = engine; } else { ret->engine = ENGINE_get_default_RSA(); } if (ret->engine) { ret->meth = ENGINE_get_RSA(ret->engine); if (ret->meth == NULL) { ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB); goto err; } } #endif ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW; #ifndef FIPS_MODULE if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) { goto err; } #endif if ((ret->meth->init != NULL) && !ret->meth->init(ret)) { ERR_raise(ERR_LIB_RSA, ERR_R_INIT_FAIL); goto err; } return ret; err: RSA_free(ret); return NULL; } void RSA_free(RSA *r) { int i; if (r == NULL) return; CRYPTO_DOWN_REF(&r->references, &i); REF_PRINT_COUNT("RSA", r); if (i > 0) return; REF_ASSERT_ISNT(i < 0); if (r->meth != NULL && r->meth->finish != NULL) r->meth->finish(r); #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE) ENGINE_finish(r->engine); #endif #ifndef FIPS_MODULE CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data); #endif CRYPTO_THREAD_lock_free(r->lock); CRYPTO_FREE_REF(&r->references); BN_free(r->n); BN_free(r->e); BN_clear_free(r->d); BN_clear_free(r->p); BN_clear_free(r->q); BN_clear_free(r->dmp1); BN_clear_free(r->dmq1); BN_clear_free(r->iqmp); #if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS) ossl_rsa_acvp_test_free(r->acvp_test); #endif #ifndef FIPS_MODULE RSA_PSS_PARAMS_free(r->pss); sk_RSA_PRIME_INFO_pop_free(r->prime_infos, ossl_rsa_multip_info_free); #endif BN_BLINDING_free(r->blinding); BN_BLINDING_free(r->mt_blinding); OPENSSL_free(r); } int RSA_up_ref(RSA *r) { int i; if (CRYPTO_UP_REF(&r->references, &i) <= 0) return 0; REF_PRINT_COUNT("RSA", r); REF_ASSERT_ISNT(i < 2); return i > 1 ? 1 : 0; } OSSL_LIB_CTX *ossl_rsa_get0_libctx(RSA *r) { return r->libctx; } void ossl_rsa_set0_libctx(RSA *r, OSSL_LIB_CTX *libctx) { r->libctx = libctx; } #ifndef FIPS_MODULE int RSA_set_ex_data(RSA *r, int idx, void *arg) { return CRYPTO_set_ex_data(&r->ex_data, idx, arg); } void *RSA_get_ex_data(const RSA *r, int idx) { return CRYPTO_get_ex_data(&r->ex_data, idx); } #endif /* * Define a scaling constant for our fixed point arithmetic. * This value must be a power of two because the base two logarithm code * makes this assumption. The exponent must also be a multiple of three so * that the scale factor has an exact cube root. Finally, the scale factor * should not be so large that a multiplication of two scaled numbers * overflows a 64 bit unsigned integer. */ static const unsigned int scale = 1 << 18; static const unsigned int cbrt_scale = 1 << (2 * 18 / 3); /* Define some constants, none exceed 32 bits */ static const unsigned int log_2 = 0x02c5c8; /* scale * log(2) */ static const unsigned int log_e = 0x05c551; /* scale * log2(M_E) */ static const unsigned int c1_923 = 0x07b126; /* scale * 1.923 */ static const unsigned int c4_690 = 0x12c28f; /* scale * 4.690 */ /* * Multiply two scaled integers together and rescale the result. */ static ossl_inline uint64_t mul2(uint64_t a, uint64_t b) { return a * b / scale; } /* * Calculate the cube root of a 64 bit scaled integer. * Although the cube root of a 64 bit number does fit into a 32 bit unsigned * integer, this is not guaranteed after scaling, so this function has a * 64 bit return. This uses the shifting nth root algorithm with some * algebraic simplifications. */ static uint64_t icbrt64(uint64_t x) { uint64_t r = 0; uint64_t b; int s; for (s = 63; s >= 0; s -= 3) { r <<= 1; b = 3 * r * (r + 1) + 1; if ((x >> s) >= b) { x -= b << s; r++; } } return r * cbrt_scale; } /* * Calculate the natural logarithm of a 64 bit scaled integer. * This is done by calculating a base two logarithm and scaling. * The maximum logarithm (base 2) is 64 and this reduces base e, so * a 32 bit result should not overflow. The argument passed must be * greater than unity so we don't need to handle negative results. */ static uint32_t ilog_e(uint64_t v) { uint32_t i, r = 0; /* * Scale down the value into the range 1 .. 2. * * If fractional numbers need to be processed, another loop needs * to go here that checks v < scale and if so multiplies it by 2 and * reduces r by scale. This also means making r signed. */ while (v >= 2 * scale) { v >>= 1; r += scale; } for (i = scale / 2; i != 0; i /= 2) { v = mul2(v, v); if (v >= 2 * scale) { v >>= 1; r += i; } } r = (r * (uint64_t)scale) / log_e; return r; } /* * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC * Modulus Lengths. * * Note that this formula is also referred to in SP800-56A rev3 Appendix D: * for FFC safe prime groups for modp and ffdhe. * After Table 25 and Table 26 it refers to * "The maximum security strength estimates were calculated using the formula in * Section 7.5 of the FIPS 140 IG and rounded to the nearest multiple of eight * bits". * * The formula is: * * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)} * \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)} * The two cube roots are merged together here. */ uint16_t ossl_ifc_ffc_compute_security_bits(int n) { uint64_t x; uint32_t lx; uint16_t y, cap; /* * Look for common values as listed in standards. * These values are not exactly equal to the results from the formulae in * the standards but are defined to be canonical. */ switch (n) { case 2048: /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */ return 112; case 3072: /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */ return 128; case 4096: /* SP 800-56B rev 2 Appendix D */ return 152; case 6144: /* SP 800-56B rev 2 Appendix D */ return 176; case 7680: /* FIPS 140-2 IG 7.5 */ return 192; case 8192: /* SP 800-56B rev 2 Appendix D */ return 200; case 15360: /* FIPS 140-2 IG 7.5 */ return 256; } /* * The first incorrect result (i.e. not accurate or off by one low) occurs * for n = 699668. The true value here is 1200. Instead of using this n * as the check threshold, the smallest n such that the correct result is * 1200 is used instead. */ if (n >= 687737) return 1200; if (n < 8) return 0; /* * To ensure that the output is non-decreasing with respect to n, * a cap needs to be applied to the two values where the function over * estimates the strength (according to the above fast path). */ if (n <= 7680) cap = 192; else if (n <= 15360) cap = 256; else cap = 1200; x = n * (uint64_t)log_2; lx = ilog_e(x); y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690) / log_2); y = (y + 4) & ~7; if (y > cap) y = cap; return y; } int RSA_security_bits(const RSA *rsa) { int bits = BN_num_bits(rsa->n); #ifndef FIPS_MODULE if (rsa->version == RSA_ASN1_VERSION_MULTI) { /* This ought to mean that we have private key at hand. */ int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos); if (ex_primes <= 0 || (ex_primes + 2) > ossl_rsa_multip_cap(bits)) return 0; } #endif return ossl_ifc_ffc_compute_security_bits(bits); } int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) { /* If the fields n and e in r are NULL, the corresponding input * parameters MUST be non-NULL for n and e. d may be * left NULL (in case only the public key is used). */ if ((r->n == NULL && n == NULL) || (r->e == NULL && e == NULL)) return 0; if (n != NULL) { BN_free(r->n); r->n = n; } if (e != NULL) { BN_free(r->e); r->e = e; } if (d != NULL) { BN_clear_free(r->d); r->d = d; BN_set_flags(r->d, BN_FLG_CONSTTIME); } r->dirty_cnt++; return 1; } int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q) { /* If the fields p and q in r are NULL, the corresponding input * parameters MUST be non-NULL. */ if ((r->p == NULL && p == NULL) || (r->q == NULL && q == NULL)) return 0; if (p != NULL) { BN_clear_free(r->p); r->p = p; BN_set_flags(r->p, BN_FLG_CONSTTIME); } if (q != NULL) { BN_clear_free(r->q); r->q = q; BN_set_flags(r->q, BN_FLG_CONSTTIME); } r->dirty_cnt++; return 1; } int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp) { /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input * parameters MUST be non-NULL. */ if ((r->dmp1 == NULL && dmp1 == NULL) || (r->dmq1 == NULL && dmq1 == NULL) || (r->iqmp == NULL && iqmp == NULL)) return 0; if (dmp1 != NULL) { BN_clear_free(r->dmp1); r->dmp1 = dmp1; BN_set_flags(r->dmp1, BN_FLG_CONSTTIME); } if (dmq1 != NULL) { BN_clear_free(r->dmq1); r->dmq1 = dmq1; BN_set_flags(r->dmq1, BN_FLG_CONSTTIME); } if (iqmp != NULL) { BN_clear_free(r->iqmp); r->iqmp = iqmp; BN_set_flags(r->iqmp, BN_FLG_CONSTTIME); } r->dirty_cnt++; return 1; } #ifndef FIPS_MODULE /* * Is it better to export RSA_PRIME_INFO structure * and related functions to let user pass a triplet? */ int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[], BIGNUM *coeffs[], int pnum) { STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL; RSA_PRIME_INFO *pinfo; int i; if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0) return 0; prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum); if (prime_infos == NULL) return 0; if (r->prime_infos != NULL) old = r->prime_infos; for (i = 0; i < pnum; i++) { pinfo = ossl_rsa_multip_info_new(); if (pinfo == NULL) goto err; if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) { BN_clear_free(pinfo->r); BN_clear_free(pinfo->d); BN_clear_free(pinfo->t); pinfo->r = primes[i]; pinfo->d = exps[i]; pinfo->t = coeffs[i]; BN_set_flags(pinfo->r, BN_FLG_CONSTTIME); BN_set_flags(pinfo->d, BN_FLG_CONSTTIME); BN_set_flags(pinfo->t, BN_FLG_CONSTTIME); } else { ossl_rsa_multip_info_free(pinfo); goto err; } (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo); } r->prime_infos = prime_infos; if (!ossl_rsa_multip_calc_product(r)) { r->prime_infos = old; goto err; } if (old != NULL) { /* * This is hard to deal with, since the old infos could * also be set by this function and r, d, t should not * be freed in that case. So currently, stay consistent * with other *set0* functions: just free it... */ sk_RSA_PRIME_INFO_pop_free(old, ossl_rsa_multip_info_free); } r->version = RSA_ASN1_VERSION_MULTI; r->dirty_cnt++; return 1; err: /* r, d, t should not be freed */ sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex); return 0; } #endif void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) { if (n != NULL) *n = r->n; if (e != NULL) *e = r->e; if (d != NULL) *d = r->d; } void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q) { if (p != NULL) *p = r->p; if (q != NULL) *q = r->q; } #ifndef FIPS_MODULE int RSA_get_multi_prime_extra_count(const RSA *r) { int pnum; pnum = sk_RSA_PRIME_INFO_num(r->prime_infos); if (pnum <= 0) pnum = 0; return pnum; } int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[]) { int pnum, i; RSA_PRIME_INFO *pinfo; if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0) return 0; /* * return other primes * it's caller's responsibility to allocate oth_primes[pnum] */ for (i = 0; i < pnum; i++) { pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i); primes[i] = pinfo->r; } return 1; } #endif void RSA_get0_crt_params(const RSA *r, const BIGNUM **dmp1, const BIGNUM **dmq1, const BIGNUM **iqmp) { if (dmp1 != NULL) *dmp1 = r->dmp1; if (dmq1 != NULL) *dmq1 = r->dmq1; if (iqmp != NULL) *iqmp = r->iqmp; } #ifndef FIPS_MODULE int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[], const BIGNUM *coeffs[]) { int pnum; if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0) return 0; /* return other primes */ if (exps != NULL || coeffs != NULL) { RSA_PRIME_INFO *pinfo; int i; /* it's the user's job to guarantee the buffer length */ for (i = 0; i < pnum; i++) { pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i); if (exps != NULL) exps[i] = pinfo->d; if (coeffs != NULL) coeffs[i] = pinfo->t; } } return 1; } #endif const BIGNUM *RSA_get0_n(const RSA *r) { return r->n; } const BIGNUM *RSA_get0_e(const RSA *r) { return r->e; } const BIGNUM *RSA_get0_d(const RSA *r) { return r->d; } const BIGNUM *RSA_get0_p(const RSA *r) { return r->p; } const BIGNUM *RSA_get0_q(const RSA *r) { return r->q; } const BIGNUM *RSA_get0_dmp1(const RSA *r) { return r->dmp1; } const BIGNUM *RSA_get0_dmq1(const RSA *r) { return r->dmq1; } const BIGNUM *RSA_get0_iqmp(const RSA *r) { return r->iqmp; } const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r) { #ifdef FIPS_MODULE return NULL; #else return r->pss; #endif } /* Internal */ int ossl_rsa_set0_pss_params(RSA *r, RSA_PSS_PARAMS *pss) { #ifdef FIPS_MODULE return 0; #else RSA_PSS_PARAMS_free(r->pss); r->pss = pss; return 1; #endif } /* Internal */ RSA_PSS_PARAMS_30 *ossl_rsa_get0_pss_params_30(RSA *r) { return &r->pss_params; } void RSA_clear_flags(RSA *r, int flags) { r->flags &= ~flags; } int RSA_test_flags(const RSA *r, int flags) { return r->flags & flags; } void RSA_set_flags(RSA *r, int flags) { r->flags |= flags; } int RSA_get_version(RSA *r) { /* { two-prime(0), multi(1) } */ return r->version; } #ifndef FIPS_MODULE ENGINE *RSA_get0_engine(const RSA *r) { return r->engine; } int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2) { /* If key type not RSA or RSA-PSS return error */ if (ctx != NULL && ctx->pmeth != NULL && ctx->pmeth->pkey_id != EVP_PKEY_RSA && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS) return -1; return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2); } #endif DEFINE_STACK_OF(BIGNUM) int ossl_rsa_set0_all_params(RSA *r, const STACK_OF(BIGNUM) *primes, const STACK_OF(BIGNUM) *exps, const STACK_OF(BIGNUM) *coeffs) { #ifndef FIPS_MODULE STACK_OF(RSA_PRIME_INFO) *prime_infos, *old_infos = NULL; #endif int pnum; if (primes == NULL || exps == NULL || coeffs == NULL) return 0; pnum = sk_BIGNUM_num(primes); if (pnum < 2) return 0; if (!RSA_set0_factors(r, sk_BIGNUM_value(primes, 0), sk_BIGNUM_value(primes, 1))) return 0; if (pnum == sk_BIGNUM_num(exps) && pnum == sk_BIGNUM_num(coeffs) + 1) { if (!RSA_set0_crt_params(r, sk_BIGNUM_value(exps, 0), sk_BIGNUM_value(exps, 1), sk_BIGNUM_value(coeffs, 0))) return 0; } #ifndef FIPS_MODULE old_infos = r->prime_infos; #endif if (pnum > 2) { #ifndef FIPS_MODULE int i; prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum); if (prime_infos == NULL) return 0; for (i = 2; i < pnum; i++) { BIGNUM *prime = sk_BIGNUM_value(primes, i); BIGNUM *exp = sk_BIGNUM_value(exps, i); BIGNUM *coeff = sk_BIGNUM_value(coeffs, i - 1); RSA_PRIME_INFO *pinfo = NULL; if (!ossl_assert(prime != NULL && exp != NULL && coeff != NULL)) goto err; /* Using ossl_rsa_multip_info_new() is wasteful, so allocate directly */ if ((pinfo = OPENSSL_zalloc(sizeof(*pinfo))) == NULL) goto err; pinfo->r = prime; pinfo->d = exp; pinfo->t = coeff; BN_set_flags(pinfo->r, BN_FLG_CONSTTIME); BN_set_flags(pinfo->d, BN_FLG_CONSTTIME); BN_set_flags(pinfo->t, BN_FLG_CONSTTIME); (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo); } r->prime_infos = prime_infos; if (!ossl_rsa_multip_calc_product(r)) { r->prime_infos = old_infos; goto err; } #else return 0; #endif } #ifndef FIPS_MODULE if (old_infos != NULL) { /* * This is hard to deal with, since the old infos could * also be set by this function and r, d, t should not * be freed in that case. So currently, stay consistent * with other *set0* functions: just free it... */ sk_RSA_PRIME_INFO_pop_free(old_infos, ossl_rsa_multip_info_free); } #endif r->version = pnum > 2 ? RSA_ASN1_VERSION_MULTI : RSA_ASN1_VERSION_DEFAULT; r->dirty_cnt++; return 1; #ifndef FIPS_MODULE err: /* r, d, t should not be freed */ sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex); return 0; #endif } DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM) int ossl_rsa_get0_all_params(RSA *r, STACK_OF(BIGNUM_const) *primes, STACK_OF(BIGNUM_const) *exps, STACK_OF(BIGNUM_const) *coeffs) { #ifndef FIPS_MODULE RSA_PRIME_INFO *pinfo; int i, pnum; #endif if (r == NULL) return 0; /* If |p| is NULL, there are no CRT parameters */ if (RSA_get0_p(r) == NULL) return 1; sk_BIGNUM_const_push(primes, RSA_get0_p(r)); sk_BIGNUM_const_push(primes, RSA_get0_q(r)); sk_BIGNUM_const_push(exps, RSA_get0_dmp1(r)); sk_BIGNUM_const_push(exps, RSA_get0_dmq1(r)); sk_BIGNUM_const_push(coeffs, RSA_get0_iqmp(r)); #ifndef FIPS_MODULE pnum = RSA_get_multi_prime_extra_count(r); for (i = 0; i < pnum; i++) { pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i); sk_BIGNUM_const_push(primes, pinfo->r); sk_BIGNUM_const_push(exps, pinfo->d); sk_BIGNUM_const_push(coeffs, pinfo->t); } #endif return 1; } #ifndef FIPS_MODULE /* Helpers to set or get diverse hash algorithm names */ static int int_set_rsa_md_name(EVP_PKEY_CTX *ctx, /* For checks */ int keytype, int optype, /* For EVP_PKEY_CTX_set_params() */ const char *mdkey, const char *mdname, const char *propkey, const char *mdprops) { OSSL_PARAM params[3], *p = params; if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) { ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); /* Uses the same return values as EVP_PKEY_CTX_ctrl */ return -2; } /* If key type not RSA return error */ switch (keytype) { case -1: if (!EVP_PKEY_CTX_is_a(ctx, "RSA") && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS")) return -1; break; default: if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype))) return -1; break; } /* Cast away the const. This is read only so should be safe */ *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, 0); if (evp_pkey_ctx_is_provided(ctx) && mdprops != NULL) { /* Cast away the const. This is read only so should be safe */ *p++ = OSSL_PARAM_construct_utf8_string(propkey, (char *)mdprops, 0); } *p++ = OSSL_PARAM_construct_end(); return evp_pkey_ctx_set_params_strict(ctx, params); } /* Helpers to set or get diverse hash algorithm names */ static int int_get_rsa_md_name(EVP_PKEY_CTX *ctx, /* For checks */ int keytype, int optype, /* For EVP_PKEY_CTX_get_params() */ const char *mdkey, char *mdname, size_t mdnamesize) { OSSL_PARAM params[2], *p = params; if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) { ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); /* Uses the same return values as EVP_PKEY_CTX_ctrl */ return -2; } /* If key type not RSA return error */ switch (keytype) { case -1: if (!EVP_PKEY_CTX_is_a(ctx, "RSA") && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS")) return -1; break; default: if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype))) return -1; break; } /* Cast away the const. This is read only so should be safe */ *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, mdnamesize); *p++ = OSSL_PARAM_construct_end(); return evp_pkey_ctx_get_params_strict(ctx, params); } /* * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, * simply because that's easier. */ int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad_mode) { return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING, pad_mode, NULL); } /* * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, * simply because that's easier. */ int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad_mode) { return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING, 0, pad_mode); } /* * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, * simply because that's easier. */ int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) { return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_MD, 0, (void *)(md)); } int EVP_PKEY_CTX_set_rsa_pss_keygen_md_name(EVP_PKEY_CTX *ctx, const char *mdname, const char *mdprops) { return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN, OSSL_PKEY_PARAM_RSA_DIGEST, mdname, OSSL_PKEY_PARAM_RSA_DIGEST_PROPS, mdprops); } /* * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, * simply because that's easier. */ int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) { /* If key type not RSA return error */ if (!EVP_PKEY_CTX_is_a(ctx, "RSA")) return -1; return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)(md)); } int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname, const char *mdprops) { return int_set_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, mdname, OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST_PROPS, mdprops); } int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name, size_t namesize) { return int_get_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, name, namesize); } /* * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, * simply because that's easier. */ int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md) { /* If key type not RSA return error */ if (!EVP_PKEY_CTX_is_a(ctx, "RSA")) return -1; return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)md); } /* * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, * simply because that's easier. */ int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) { return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT, EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md)); } int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname, const char *mdprops) { return int_set_rsa_md_name(ctx, -1, EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG, OSSL_PKEY_PARAM_MGF1_DIGEST, mdname, OSSL_PKEY_PARAM_MGF1_PROPERTIES, mdprops); } int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name, size_t namesize) { return int_get_rsa_md_name(ctx, -1, EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG, OSSL_PKEY_PARAM_MGF1_DIGEST, name, namesize); } /* * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, * simply because that's easier. */ int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) { return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md)); } int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname) { return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN, OSSL_PKEY_PARAM_MGF1_DIGEST, mdname, NULL, NULL); } /* * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, * simply because that's easier. */ int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md) { return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT, EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)(md)); } int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label, int llen) { OSSL_PARAM rsa_params[2], *p = rsa_params; const char *empty = ""; /* * Needed as we swap label with empty if it is NULL, and label is * freed at the end of this function. */ void *plabel = label; int ret; if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) { ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); /* Uses the same return values as EVP_PKEY_CTX_ctrl */ return -2; } /* If key type not RSA return error */ if (!EVP_PKEY_CTX_is_a(ctx, "RSA")) return -1; /* Accept NULL for backward compatibility */ if (label == NULL && llen == 0) plabel = (void *)empty; /* Cast away the const. This is read only so should be safe */ *p++ = OSSL_PARAM_construct_octet_string(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL, (void *)plabel, (size_t)llen); *p++ = OSSL_PARAM_construct_end(); ret = evp_pkey_ctx_set_params_strict(ctx, rsa_params); if (ret <= 0) return ret; /* Ownership is supposed to be transferred to the callee. */ OPENSSL_free(label); return 1; } int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label) { OSSL_PARAM rsa_params[2], *p = rsa_params; size_t labellen; if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) { ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); /* Uses the same return values as EVP_PKEY_CTX_ctrl */ return -2; } /* If key type not RSA return error */ if (!EVP_PKEY_CTX_is_a(ctx, "RSA")) return -1; *p++ = OSSL_PARAM_construct_octet_ptr(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL, (void **)label, 0); *p++ = OSSL_PARAM_construct_end(); if (!EVP_PKEY_CTX_get_params(ctx, rsa_params)) return -1; labellen = rsa_params[0].return_size; if (labellen > INT_MAX) return -1; return (int)labellen; } /* * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, * simply because that's easier. */ int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen) { /* * For some reason, the optype was set to this: * * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY * * However, we do use RSA-PSS with the whole gamut of diverse signature * and verification operations, so the optype gets upgraded to this: * * EVP_PKEY_OP_TYPE_SIG */ return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_CTRL_RSA_PSS_SALTLEN, saltlen, NULL); } /* * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, * simply because that's easier. */ int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen) { /* * Because of circumstances, the optype is updated from: * * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY * * to: * * EVP_PKEY_OP_TYPE_SIG */ return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, saltlen); } int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int saltlen) { OSSL_PARAM pad_params[2], *p = pad_params; if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) { ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); /* Uses the same return values as EVP_PKEY_CTX_ctrl */ return -2; } if (!EVP_PKEY_CTX_is_a(ctx, "RSA-PSS")) return -1; *p++ = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_PSS_SALTLEN, &saltlen); *p++ = OSSL_PARAM_construct_end(); return evp_pkey_ctx_set_params_strict(ctx, pad_params); } int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits) { OSSL_PARAM params[2], *p = params; size_t bits2 = bits; if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) { ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); /* Uses the same return values as EVP_PKEY_CTX_ctrl */ return -2; } /* If key type not RSA return error */ if (!EVP_PKEY_CTX_is_a(ctx, "RSA") && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS")) return -1; *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_BITS, &bits2); *p++ = OSSL_PARAM_construct_end(); return evp_pkey_ctx_set_params_strict(ctx, params); } int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp) { int ret = RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp); /* * Satisfy memory semantics for pre-3.0 callers of * EVP_PKEY_CTX_set_rsa_keygen_pubexp(): their expectation is that input * pubexp BIGNUM becomes managed by the EVP_PKEY_CTX on success. */ if (ret > 0 && evp_pkey_ctx_is_provided(ctx)) { BN_free(ctx->rsa_pubexp); ctx->rsa_pubexp = pubexp; } return ret; } int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp) { int ret = 0; /* * When we're dealing with a provider, there's no need to duplicate * pubexp, as it gets copied when transforming to an OSSL_PARAM anyway. */ if (evp_pkey_ctx_is_legacy(ctx)) { pubexp = BN_dup(pubexp); if (pubexp == NULL) return 0; } ret = EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp); if (evp_pkey_ctx_is_legacy(ctx) && ret <= 0) BN_free(pubexp); return ret; } int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes) { OSSL_PARAM params[2], *p = params; size_t primes2 = primes; if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) { ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); /* Uses the same return values as EVP_PKEY_CTX_ctrl */ return -2; } /* If key type not RSA return error */ if (!EVP_PKEY_CTX_is_a(ctx, "RSA") && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS")) return -1; *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_PRIMES, &primes2); *p++ = OSSL_PARAM_construct_end(); return evp_pkey_ctx_set_params_strict(ctx, params); } #endif