dockerfile/examples/openssl/openssl-3.2.1-src/crypto/bn/asm/x86_64-mont5.pl

3770 lines
82 KiB
Perl
Raw Normal View History

2024-03-22 14:58:37 +08:00
#! /usr/bin/env perl
# Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the Apache License 2.0 (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# August 2011.
#
# Companion to x86_64-mont.pl that optimizes cache-timing attack
# countermeasures. The subroutines are produced by replacing bp[i]
# references in their x86_64-mont.pl counterparts with cache-neutral
# references to powers table computed in BN_mod_exp_mont_consttime.
# In addition subroutine that scatters elements of the powers table
# is implemented, so that scatter-/gathering can be tuned without
# bn_exp.c modifications.
# August 2013.
#
# Add MULX/AD*X code paths and additional interfaces to optimize for
# branch prediction unit. For input lengths that are multiples of 8
# the np argument is not just modulus value, but one interleaved
# with 0. This is to optimize post-condition...
# $output is the last argument if it looks like a file (it has an extension)
# $flavour is the first argument if it doesn't look like a file
$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
or die "can't call $xlate: $!";
*STDOUT=*OUT;
if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
$addx = ($1>=2.23);
}
if (!$addx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
$addx = ($1>=2.10);
}
if (!$addx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
`ml64 2>&1` =~ /Version ([0-9]+)\./) {
$addx = ($1>=12);
}
if (!$addx && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)/) {
my $ver = $2 + $3/100.0; # 3.1->3.01, 3.10->3.10
$addx = ($ver>=3.03);
}
# int bn_mul_mont_gather5(
$rp="%rdi"; # BN_ULONG *rp,
$ap="%rsi"; # const BN_ULONG *ap,
$bp="%rdx"; # const BN_ULONG *bp,
$np="%rcx"; # const BN_ULONG *np,
$n0="%r8"; # const BN_ULONG *n0,
$num="%r9"; # int num,
# int idx); # 0 to 2^5-1, "index" in $bp holding
# pre-computed powers of a', interlaced
# in such manner that b[0] is $bp[idx],
# b[1] is [2^5+idx], etc.
$lo0="%r10";
$hi0="%r11";
$hi1="%r13";
$i="%r14";
$j="%r15";
$m0="%rbx";
$m1="%rbp";
$code=<<___;
.text
.extern OPENSSL_ia32cap_P
.globl bn_mul_mont_gather5
.type bn_mul_mont_gather5,\@function,6
.align 64
bn_mul_mont_gather5:
.cfi_startproc
mov ${num}d,${num}d
mov %rsp,%rax
.cfi_def_cfa_register %rax
test \$7,${num}d
jnz .Lmul_enter
___
$code.=<<___ if ($addx);
mov OPENSSL_ia32cap_P+8(%rip),%r11d
___
$code.=<<___;
jmp .Lmul4x_enter
.align 16
.Lmul_enter:
movd `($win64?56:8)`(%rsp),%xmm5 # load 7th argument
push %rbx
.cfi_push %rbx
push %rbp
.cfi_push %rbp
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
neg $num
mov %rsp,%r11
lea -280(%rsp,$num,8),%r10 # future alloca(8*(num+2)+256+8)
neg $num # restore $num
and \$-1024,%r10 # minimize TLB usage
# An OS-agnostic version of __chkstk.
#
# Some OSes (Windows) insist on stack being "wired" to
# physical memory in strictly sequential manner, i.e. if stack
# allocation spans two pages, then reference to farmost one can
# be punishable by SEGV. But page walking can do good even on
# other OSes, because it guarantees that villain thread hits
# the guard page before it can make damage to innocent one...
sub %r10,%r11
and \$-4096,%r11
lea (%r10,%r11),%rsp
mov (%rsp),%r11
cmp %r10,%rsp
ja .Lmul_page_walk
jmp .Lmul_page_walk_done
.Lmul_page_walk:
lea -4096(%rsp),%rsp
mov (%rsp),%r11
cmp %r10,%rsp
ja .Lmul_page_walk
.Lmul_page_walk_done:
lea .Linc(%rip),%r10
mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp
.cfi_cfa_expression %rsp+8,$num,8,mul,plus,deref,+8
.Lmul_body:
lea 128($bp),%r12 # reassign $bp (+size optimization)
___
$bp="%r12";
$STRIDE=2**5*8; # 5 is "window size"
$N=$STRIDE/4; # should match cache line size
$code.=<<___;
movdqa 0(%r10),%xmm0 # 00000001000000010000000000000000
movdqa 16(%r10),%xmm1 # 00000002000000020000000200000002
lea 24-112(%rsp,$num,8),%r10# place the mask after tp[num+3] (+ICache optimization)
and \$-16,%r10
pshufd \$0,%xmm5,%xmm5 # broadcast index
movdqa %xmm1,%xmm4
movdqa %xmm1,%xmm2
___
########################################################################
# calculate mask by comparing 0..31 to index and save result to stack
#
$code.=<<___;
paddd %xmm0,%xmm1
pcmpeqd %xmm5,%xmm0 # compare to 1,0
.byte 0x67
movdqa %xmm4,%xmm3
___
for($k=0;$k<$STRIDE/16-4;$k+=4) {
$code.=<<___;
paddd %xmm1,%xmm2
pcmpeqd %xmm5,%xmm1 # compare to 3,2
movdqa %xmm0,`16*($k+0)+112`(%r10)
movdqa %xmm4,%xmm0
paddd %xmm2,%xmm3
pcmpeqd %xmm5,%xmm2 # compare to 5,4
movdqa %xmm1,`16*($k+1)+112`(%r10)
movdqa %xmm4,%xmm1
paddd %xmm3,%xmm0
pcmpeqd %xmm5,%xmm3 # compare to 7,6
movdqa %xmm2,`16*($k+2)+112`(%r10)
movdqa %xmm4,%xmm2
paddd %xmm0,%xmm1
pcmpeqd %xmm5,%xmm0
movdqa %xmm3,`16*($k+3)+112`(%r10)
movdqa %xmm4,%xmm3
___
}
$code.=<<___; # last iteration can be optimized
paddd %xmm1,%xmm2
pcmpeqd %xmm5,%xmm1
movdqa %xmm0,`16*($k+0)+112`(%r10)
paddd %xmm2,%xmm3
.byte 0x67
pcmpeqd %xmm5,%xmm2
movdqa %xmm1,`16*($k+1)+112`(%r10)
pcmpeqd %xmm5,%xmm3
movdqa %xmm2,`16*($k+2)+112`(%r10)
pand `16*($k+0)-128`($bp),%xmm0 # while it's still in register
pand `16*($k+1)-128`($bp),%xmm1
pand `16*($k+2)-128`($bp),%xmm2
movdqa %xmm3,`16*($k+3)+112`(%r10)
pand `16*($k+3)-128`($bp),%xmm3
por %xmm2,%xmm0
por %xmm3,%xmm1
___
for($k=0;$k<$STRIDE/16-4;$k+=4) {
$code.=<<___;
movdqa `16*($k+0)-128`($bp),%xmm4
movdqa `16*($k+1)-128`($bp),%xmm5
movdqa `16*($k+2)-128`($bp),%xmm2
pand `16*($k+0)+112`(%r10),%xmm4
movdqa `16*($k+3)-128`($bp),%xmm3
pand `16*($k+1)+112`(%r10),%xmm5
por %xmm4,%xmm0
pand `16*($k+2)+112`(%r10),%xmm2
por %xmm5,%xmm1
pand `16*($k+3)+112`(%r10),%xmm3
por %xmm2,%xmm0
por %xmm3,%xmm1
___
}
$code.=<<___;
por %xmm1,%xmm0
pshufd \$0x4e,%xmm0,%xmm1
por %xmm1,%xmm0
lea $STRIDE($bp),$bp
movq %xmm0,$m0 # m0=bp[0]
mov ($n0),$n0 # pull n0[0] value
mov ($ap),%rax
xor $i,$i # i=0
xor $j,$j # j=0
mov $n0,$m1
mulq $m0 # ap[0]*bp[0]
mov %rax,$lo0
mov ($np),%rax
imulq $lo0,$m1 # "tp[0]"*n0
mov %rdx,$hi0
mulq $m1 # np[0]*m1
add %rax,$lo0 # discarded
mov 8($ap),%rax
adc \$0,%rdx
mov %rdx,$hi1
lea 1($j),$j # j++
jmp .L1st_enter
.align 16
.L1st:
add %rax,$hi1
mov ($ap,$j,8),%rax
adc \$0,%rdx
add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0]
mov $lo0,$hi0
adc \$0,%rdx
mov $hi1,-16(%rsp,$j,8) # tp[j-1]
mov %rdx,$hi1
.L1st_enter:
mulq $m0 # ap[j]*bp[0]
add %rax,$hi0
mov ($np,$j,8),%rax
adc \$0,%rdx
lea 1($j),$j # j++
mov %rdx,$lo0
mulq $m1 # np[j]*m1
cmp $num,$j
jne .L1st # note that upon exit $j==$num, so
# they can be used interchangeably
add %rax,$hi1
adc \$0,%rdx
add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0]
adc \$0,%rdx
mov $hi1,-16(%rsp,$num,8) # tp[num-1]
mov %rdx,$hi1
mov $lo0,$hi0
xor %rdx,%rdx
add $hi0,$hi1
adc \$0,%rdx
mov $hi1,-8(%rsp,$num,8)
mov %rdx,(%rsp,$num,8) # store upmost overflow bit
lea 1($i),$i # i++
jmp .Louter
.align 16
.Louter:
lea 24+128(%rsp,$num,8),%rdx # where 256-byte mask is (+size optimization)
and \$-16,%rdx
pxor %xmm4,%xmm4
pxor %xmm5,%xmm5
___
for($k=0;$k<$STRIDE/16;$k+=4) {
$code.=<<___;
movdqa `16*($k+0)-128`($bp),%xmm0
movdqa `16*($k+1)-128`($bp),%xmm1
movdqa `16*($k+2)-128`($bp),%xmm2
movdqa `16*($k+3)-128`($bp),%xmm3
pand `16*($k+0)-128`(%rdx),%xmm0
pand `16*($k+1)-128`(%rdx),%xmm1
por %xmm0,%xmm4
pand `16*($k+2)-128`(%rdx),%xmm2
por %xmm1,%xmm5
pand `16*($k+3)-128`(%rdx),%xmm3
por %xmm2,%xmm4
por %xmm3,%xmm5
___
}
$code.=<<___;
por %xmm5,%xmm4
pshufd \$0x4e,%xmm4,%xmm0
por %xmm4,%xmm0
lea $STRIDE($bp),$bp
mov ($ap),%rax # ap[0]
movq %xmm0,$m0 # m0=bp[i]
xor $j,$j # j=0
mov $n0,$m1
mov (%rsp),$lo0
mulq $m0 # ap[0]*bp[i]
add %rax,$lo0 # ap[0]*bp[i]+tp[0]
mov ($np),%rax
adc \$0,%rdx
imulq $lo0,$m1 # tp[0]*n0
mov %rdx,$hi0
mulq $m1 # np[0]*m1
add %rax,$lo0 # discarded
mov 8($ap),%rax
adc \$0,%rdx
mov 8(%rsp),$lo0 # tp[1]
mov %rdx,$hi1
lea 1($j),$j # j++
jmp .Linner_enter
.align 16
.Linner:
add %rax,$hi1
mov ($ap,$j,8),%rax
adc \$0,%rdx
add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j]
mov (%rsp,$j,8),$lo0
adc \$0,%rdx
mov $hi1,-16(%rsp,$j,8) # tp[j-1]
mov %rdx,$hi1
.Linner_enter:
mulq $m0 # ap[j]*bp[i]
add %rax,$hi0
mov ($np,$j,8),%rax
adc \$0,%rdx
add $hi0,$lo0 # ap[j]*bp[i]+tp[j]
mov %rdx,$hi0
adc \$0,$hi0
lea 1($j),$j # j++
mulq $m1 # np[j]*m1
cmp $num,$j
jne .Linner # note that upon exit $j==$num, so
# they can be used interchangeably
add %rax,$hi1
adc \$0,%rdx
add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j]
mov (%rsp,$num,8),$lo0
adc \$0,%rdx
mov $hi1,-16(%rsp,$num,8) # tp[num-1]
mov %rdx,$hi1
xor %rdx,%rdx
add $hi0,$hi1
adc \$0,%rdx
add $lo0,$hi1 # pull upmost overflow bit
adc \$0,%rdx
mov $hi1,-8(%rsp,$num,8)
mov %rdx,(%rsp,$num,8) # store upmost overflow bit
lea 1($i),$i # i++
cmp $num,$i
jb .Louter
xor $i,$i # i=0 and clear CF!
mov (%rsp),%rax # tp[0]
lea (%rsp),$ap # borrow ap for tp
mov $num,$j # j=num
jmp .Lsub
.align 16
.Lsub: sbb ($np,$i,8),%rax
mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i]
mov 8($ap,$i,8),%rax # tp[i+1]
lea 1($i),$i # i++
dec $j # doesn't affect CF!
jnz .Lsub
sbb \$0,%rax # handle upmost overflow bit
mov \$-1,%rbx
xor %rax,%rbx
xor $i,$i
mov $num,$j # j=num
.Lcopy: # conditional copy
mov ($rp,$i,8),%rcx
mov (%rsp,$i,8),%rdx
and %rbx,%rcx
and %rax,%rdx
mov $i,(%rsp,$i,8) # zap temporary vector
or %rcx,%rdx
mov %rdx,($rp,$i,8) # rp[i]=tp[i]
lea 1($i),$i
sub \$1,$j
jnz .Lcopy
mov 8(%rsp,$num,8),%rsi # restore %rsp
.cfi_def_cfa %rsi,8
mov \$1,%rax
mov -48(%rsi),%r15
.cfi_restore %r15
mov -40(%rsi),%r14
.cfi_restore %r14
mov -32(%rsi),%r13
.cfi_restore %r13
mov -24(%rsi),%r12
.cfi_restore %r12
mov -16(%rsi),%rbp
.cfi_restore %rbp
mov -8(%rsi),%rbx
.cfi_restore %rbx
lea (%rsi),%rsp
.cfi_def_cfa_register %rsp
.Lmul_epilogue:
ret
.cfi_endproc
.size bn_mul_mont_gather5,.-bn_mul_mont_gather5
___
{{{
my @A=("%r10","%r11");
my @N=("%r13","%rdi");
$code.=<<___;
.type bn_mul4x_mont_gather5,\@function,6
.align 32
bn_mul4x_mont_gather5:
.cfi_startproc
.byte 0x67
mov %rsp,%rax
.cfi_def_cfa_register %rax
.Lmul4x_enter:
___
$code.=<<___ if ($addx);
and \$0x80108,%r11d
cmp \$0x80108,%r11d # check for AD*X+BMI2+BMI1
je .Lmulx4x_enter
___
$code.=<<___;
push %rbx
.cfi_push %rbx
push %rbp
.cfi_push %rbp
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lmul4x_prologue:
.byte 0x67
shl \$3,${num}d # convert $num to bytes
lea ($num,$num,2),%r10 # 3*$num in bytes
neg $num # -$num
##############################################################
# Ensure that stack frame doesn't alias with $rptr+3*$num
# modulo 4096, which covers ret[num], am[num] and n[num]
# (see bn_exp.c). This is done to allow memory disambiguation
# logic do its magic. [Extra [num] is allocated in order
# to align with bn_power5's frame, which is cleansed after
# completing exponentiation. Extra 256 bytes is for power mask
# calculated from 7th argument, the index.]
#
lea -320(%rsp,$num,2),%r11
mov %rsp,%rbp
sub $rp,%r11
and \$4095,%r11
cmp %r11,%r10
jb .Lmul4xsp_alt
sub %r11,%rbp # align with $rp
lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256)
jmp .Lmul4xsp_done
.align 32
.Lmul4xsp_alt:
lea 4096-320(,$num,2),%r10
lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256)
sub %r10,%r11
mov \$0,%r10
cmovc %r10,%r11
sub %r11,%rbp
.Lmul4xsp_done:
and \$-64,%rbp
mov %rsp,%r11
sub %rbp,%r11
and \$-4096,%r11
lea (%rbp,%r11),%rsp
mov (%rsp),%r10
cmp %rbp,%rsp
ja .Lmul4x_page_walk
jmp .Lmul4x_page_walk_done
.Lmul4x_page_walk:
lea -4096(%rsp),%rsp
mov (%rsp),%r10
cmp %rbp,%rsp
ja .Lmul4x_page_walk
.Lmul4x_page_walk_done:
neg $num
mov %rax,40(%rsp)
.cfi_cfa_expression %rsp+40,deref,+8
.Lmul4x_body:
call mul4x_internal
mov 40(%rsp),%rsi # restore %rsp
.cfi_def_cfa %rsi,8
mov \$1,%rax
mov -48(%rsi),%r15
.cfi_restore %r15
mov -40(%rsi),%r14
.cfi_restore %r14
mov -32(%rsi),%r13
.cfi_restore %r13
mov -24(%rsi),%r12
.cfi_restore %r12
mov -16(%rsi),%rbp
.cfi_restore %rbp
mov -8(%rsi),%rbx
.cfi_restore %rbx
lea (%rsi),%rsp
.cfi_def_cfa_register %rsp
.Lmul4x_epilogue:
ret
.cfi_endproc
.size bn_mul4x_mont_gather5,.-bn_mul4x_mont_gather5
.type mul4x_internal,\@abi-omnipotent
.align 32
mul4x_internal:
.cfi_startproc
shl \$5,$num # $num was in bytes
movd `($win64?56:8)`(%rax),%xmm5 # load 7th argument, index
lea .Linc(%rip),%rax
lea 128(%rdx,$num),%r13 # end of powers table (+size optimization)
shr \$5,$num # restore $num
___
$bp="%r12";
$STRIDE=2**5*8; # 5 is "window size"
$N=$STRIDE/4; # should match cache line size
$tp=$i;
$code.=<<___;
movdqa 0(%rax),%xmm0 # 00000001000000010000000000000000
movdqa 16(%rax),%xmm1 # 00000002000000020000000200000002
lea 88-112(%rsp,$num),%r10 # place the mask after tp[num+1] (+ICache optimization)
lea 128(%rdx),$bp # size optimization
pshufd \$0,%xmm5,%xmm5 # broadcast index
movdqa %xmm1,%xmm4
.byte 0x67,0x67
movdqa %xmm1,%xmm2
___
########################################################################
# calculate mask by comparing 0..31 to index and save result to stack
#
$code.=<<___;
paddd %xmm0,%xmm1
pcmpeqd %xmm5,%xmm0 # compare to 1,0
.byte 0x67
movdqa %xmm4,%xmm3
___
for($i=0;$i<$STRIDE/16-4;$i+=4) {
$code.=<<___;
paddd %xmm1,%xmm2
pcmpeqd %xmm5,%xmm1 # compare to 3,2
movdqa %xmm0,`16*($i+0)+112`(%r10)
movdqa %xmm4,%xmm0
paddd %xmm2,%xmm3
pcmpeqd %xmm5,%xmm2 # compare to 5,4
movdqa %xmm1,`16*($i+1)+112`(%r10)
movdqa %xmm4,%xmm1
paddd %xmm3,%xmm0
pcmpeqd %xmm5,%xmm3 # compare to 7,6
movdqa %xmm2,`16*($i+2)+112`(%r10)
movdqa %xmm4,%xmm2
paddd %xmm0,%xmm1
pcmpeqd %xmm5,%xmm0
movdqa %xmm3,`16*($i+3)+112`(%r10)
movdqa %xmm4,%xmm3
___
}
$code.=<<___; # last iteration can be optimized
paddd %xmm1,%xmm2
pcmpeqd %xmm5,%xmm1
movdqa %xmm0,`16*($i+0)+112`(%r10)
paddd %xmm2,%xmm3
.byte 0x67
pcmpeqd %xmm5,%xmm2
movdqa %xmm1,`16*($i+1)+112`(%r10)
pcmpeqd %xmm5,%xmm3
movdqa %xmm2,`16*($i+2)+112`(%r10)
pand `16*($i+0)-128`($bp),%xmm0 # while it's still in register
pand `16*($i+1)-128`($bp),%xmm1
pand `16*($i+2)-128`($bp),%xmm2
movdqa %xmm3,`16*($i+3)+112`(%r10)
pand `16*($i+3)-128`($bp),%xmm3
por %xmm2,%xmm0
por %xmm3,%xmm1
___
for($i=0;$i<$STRIDE/16-4;$i+=4) {
$code.=<<___;
movdqa `16*($i+0)-128`($bp),%xmm4
movdqa `16*($i+1)-128`($bp),%xmm5
movdqa `16*($i+2)-128`($bp),%xmm2
pand `16*($i+0)+112`(%r10),%xmm4
movdqa `16*($i+3)-128`($bp),%xmm3
pand `16*($i+1)+112`(%r10),%xmm5
por %xmm4,%xmm0
pand `16*($i+2)+112`(%r10),%xmm2
por %xmm5,%xmm1
pand `16*($i+3)+112`(%r10),%xmm3
por %xmm2,%xmm0
por %xmm3,%xmm1
___
}
$code.=<<___;
por %xmm1,%xmm0
pshufd \$0x4e,%xmm0,%xmm1
por %xmm1,%xmm0
lea $STRIDE($bp),$bp
movq %xmm0,$m0 # m0=bp[0]
mov %r13,16+8(%rsp) # save end of b[num]
mov $rp, 56+8(%rsp) # save $rp
mov ($n0),$n0 # pull n0[0] value
mov ($ap),%rax
lea ($ap,$num),$ap # end of a[num]
neg $num
mov $n0,$m1
mulq $m0 # ap[0]*bp[0]
mov %rax,$A[0]
mov ($np),%rax
imulq $A[0],$m1 # "tp[0]"*n0
lea 64+8(%rsp),$tp
mov %rdx,$A[1]
mulq $m1 # np[0]*m1
add %rax,$A[0] # discarded
mov 8($ap,$num),%rax
adc \$0,%rdx
mov %rdx,$N[1]
mulq $m0
add %rax,$A[1]
mov 8*1($np),%rax
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1
add %rax,$N[1]
mov 16($ap,$num),%rax
adc \$0,%rdx
add $A[1],$N[1]
lea 4*8($num),$j # j=4
lea 8*4($np),$np
adc \$0,%rdx
mov $N[1],($tp)
mov %rdx,$N[0]
jmp .L1st4x
.align 32
.L1st4x:
mulq $m0 # ap[j]*bp[0]
add %rax,$A[0]
mov -8*2($np),%rax
lea 32($tp),$tp
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1 # np[j]*m1
add %rax,$N[0]
mov -8($ap,$j),%rax
adc \$0,%rdx
add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0]
adc \$0,%rdx
mov $N[0],-24($tp) # tp[j-1]
mov %rdx,$N[1]
mulq $m0 # ap[j]*bp[0]
add %rax,$A[1]
mov -8*1($np),%rax
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1 # np[j]*m1
add %rax,$N[1]
mov ($ap,$j),%rax
adc \$0,%rdx
add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0]
adc \$0,%rdx
mov $N[1],-16($tp) # tp[j-1]
mov %rdx,$N[0]
mulq $m0 # ap[j]*bp[0]
add %rax,$A[0]
mov 8*0($np),%rax
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1 # np[j]*m1
add %rax,$N[0]
mov 8($ap,$j),%rax
adc \$0,%rdx
add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0]
adc \$0,%rdx
mov $N[0],-8($tp) # tp[j-1]
mov %rdx,$N[1]
mulq $m0 # ap[j]*bp[0]
add %rax,$A[1]
mov 8*1($np),%rax
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1 # np[j]*m1
add %rax,$N[1]
mov 16($ap,$j),%rax
adc \$0,%rdx
add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0]
lea 8*4($np),$np
adc \$0,%rdx
mov $N[1],($tp) # tp[j-1]
mov %rdx,$N[0]
add \$32,$j # j+=4
jnz .L1st4x
mulq $m0 # ap[j]*bp[0]
add %rax,$A[0]
mov -8*2($np),%rax
lea 32($tp),$tp
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1 # np[j]*m1
add %rax,$N[0]
mov -8($ap),%rax
adc \$0,%rdx
add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0]
adc \$0,%rdx
mov $N[0],-24($tp) # tp[j-1]
mov %rdx,$N[1]
mulq $m0 # ap[j]*bp[0]
add %rax,$A[1]
mov -8*1($np),%rax
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1 # np[j]*m1
add %rax,$N[1]
mov ($ap,$num),%rax # ap[0]
adc \$0,%rdx
add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0]
adc \$0,%rdx
mov $N[1],-16($tp) # tp[j-1]
mov %rdx,$N[0]
lea ($np,$num),$np # rewind $np
xor $N[1],$N[1]
add $A[0],$N[0]
adc \$0,$N[1]
mov $N[0],-8($tp)
jmp .Louter4x
.align 32
.Louter4x:
lea 16+128($tp),%rdx # where 256-byte mask is (+size optimization)
pxor %xmm4,%xmm4
pxor %xmm5,%xmm5
___
for($i=0;$i<$STRIDE/16;$i+=4) {
$code.=<<___;
movdqa `16*($i+0)-128`($bp),%xmm0
movdqa `16*($i+1)-128`($bp),%xmm1
movdqa `16*($i+2)-128`($bp),%xmm2
movdqa `16*($i+3)-128`($bp),%xmm3
pand `16*($i+0)-128`(%rdx),%xmm0
pand `16*($i+1)-128`(%rdx),%xmm1
por %xmm0,%xmm4
pand `16*($i+2)-128`(%rdx),%xmm2
por %xmm1,%xmm5
pand `16*($i+3)-128`(%rdx),%xmm3
por %xmm2,%xmm4
por %xmm3,%xmm5
___
}
$code.=<<___;
por %xmm5,%xmm4
pshufd \$0x4e,%xmm4,%xmm0
por %xmm4,%xmm0
lea $STRIDE($bp),$bp
movq %xmm0,$m0 # m0=bp[i]
mov ($tp,$num),$A[0]
mov $n0,$m1
mulq $m0 # ap[0]*bp[i]
add %rax,$A[0] # ap[0]*bp[i]+tp[0]
mov ($np),%rax
adc \$0,%rdx
imulq $A[0],$m1 # tp[0]*n0
mov %rdx,$A[1]
mov $N[1],($tp) # store upmost overflow bit
lea ($tp,$num),$tp # rewind $tp
mulq $m1 # np[0]*m1
add %rax,$A[0] # "$N[0]", discarded
mov 8($ap,$num),%rax
adc \$0,%rdx
mov %rdx,$N[1]
mulq $m0 # ap[j]*bp[i]
add %rax,$A[1]
mov 8*1($np),%rax
adc \$0,%rdx
add 8($tp),$A[1] # +tp[1]
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1 # np[j]*m1
add %rax,$N[1]
mov 16($ap,$num),%rax
adc \$0,%rdx
add $A[1],$N[1] # np[j]*m1+ap[j]*bp[i]+tp[j]
lea 4*8($num),$j # j=4
lea 8*4($np),$np
adc \$0,%rdx
mov %rdx,$N[0]
jmp .Linner4x
.align 32
.Linner4x:
mulq $m0 # ap[j]*bp[i]
add %rax,$A[0]
mov -8*2($np),%rax
adc \$0,%rdx
add 16($tp),$A[0] # ap[j]*bp[i]+tp[j]
lea 32($tp),$tp
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1 # np[j]*m1
add %rax,$N[0]
mov -8($ap,$j),%rax
adc \$0,%rdx
add $A[0],$N[0]
adc \$0,%rdx
mov $N[1],-32($tp) # tp[j-1]
mov %rdx,$N[1]
mulq $m0 # ap[j]*bp[i]
add %rax,$A[1]
mov -8*1($np),%rax
adc \$0,%rdx
add -8($tp),$A[1]
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1 # np[j]*m1
add %rax,$N[1]
mov ($ap,$j),%rax
adc \$0,%rdx
add $A[1],$N[1]
adc \$0,%rdx
mov $N[0],-24($tp) # tp[j-1]
mov %rdx,$N[0]
mulq $m0 # ap[j]*bp[i]
add %rax,$A[0]
mov 8*0($np),%rax
adc \$0,%rdx
add ($tp),$A[0] # ap[j]*bp[i]+tp[j]
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1 # np[j]*m1
add %rax,$N[0]
mov 8($ap,$j),%rax
adc \$0,%rdx
add $A[0],$N[0]
adc \$0,%rdx
mov $N[1],-16($tp) # tp[j-1]
mov %rdx,$N[1]
mulq $m0 # ap[j]*bp[i]
add %rax,$A[1]
mov 8*1($np),%rax
adc \$0,%rdx
add 8($tp),$A[1]
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1 # np[j]*m1
add %rax,$N[1]
mov 16($ap,$j),%rax
adc \$0,%rdx
add $A[1],$N[1]
lea 8*4($np),$np
adc \$0,%rdx
mov $N[0],-8($tp) # tp[j-1]
mov %rdx,$N[0]
add \$32,$j # j+=4
jnz .Linner4x
mulq $m0 # ap[j]*bp[i]
add %rax,$A[0]
mov -8*2($np),%rax
adc \$0,%rdx
add 16($tp),$A[0] # ap[j]*bp[i]+tp[j]
lea 32($tp),$tp
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1 # np[j]*m1
add %rax,$N[0]
mov -8($ap),%rax
adc \$0,%rdx
add $A[0],$N[0]
adc \$0,%rdx
mov $N[1],-32($tp) # tp[j-1]
mov %rdx,$N[1]
mulq $m0 # ap[j]*bp[i]
add %rax,$A[1]
mov $m1,%rax
mov -8*1($np),$m1
adc \$0,%rdx
add -8($tp),$A[1]
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1 # np[j]*m1
add %rax,$N[1]
mov ($ap,$num),%rax # ap[0]
adc \$0,%rdx
add $A[1],$N[1]
adc \$0,%rdx
mov $N[0],-24($tp) # tp[j-1]
mov %rdx,$N[0]
mov $N[1],-16($tp) # tp[j-1]
lea ($np,$num),$np # rewind $np
xor $N[1],$N[1]
add $A[0],$N[0]
adc \$0,$N[1]
add ($tp),$N[0] # pull upmost overflow bit
adc \$0,$N[1] # upmost overflow bit
mov $N[0],-8($tp)
cmp 16+8(%rsp),$bp
jb .Louter4x
___
if (1) {
$code.=<<___;
xor %rax,%rax
sub $N[0],$m1 # compare top-most words
adc $j,$j # $j is zero
or $j,$N[1]
sub $N[1],%rax # %rax=-$N[1]
lea ($tp,$num),%rbx # tptr in .sqr4x_sub
mov ($np),%r12
lea ($np),%rbp # nptr in .sqr4x_sub
mov %r9,%rcx
sar \$3+2,%rcx
mov 56+8(%rsp),%rdi # rptr in .sqr4x_sub
dec %r12 # so that after 'not' we get -n[0]
xor %r10,%r10
mov 8*1(%rbp),%r13
mov 8*2(%rbp),%r14
mov 8*3(%rbp),%r15
jmp .Lsqr4x_sub_entry
___
} else {
my @ri=("%rax",$bp,$m0,$m1);
my $rp="%rdx";
$code.=<<___
xor \$1,$N[1]
lea ($tp,$num),$tp # rewind $tp
sar \$5,$num # cf=0
lea ($np,$N[1],8),$np
mov 56+8(%rsp),$rp # restore $rp
jmp .Lsub4x
.align 32
.Lsub4x:
.byte 0x66
mov 8*0($tp),@ri[0]
mov 8*1($tp),@ri[1]
.byte 0x66
sbb 16*0($np),@ri[0]
mov 8*2($tp),@ri[2]
sbb 16*1($np),@ri[1]
mov 3*8($tp),@ri[3]
lea 4*8($tp),$tp
sbb 16*2($np),@ri[2]
mov @ri[0],8*0($rp)
sbb 16*3($np),@ri[3]
lea 16*4($np),$np
mov @ri[1],8*1($rp)
mov @ri[2],8*2($rp)
mov @ri[3],8*3($rp)
lea 8*4($rp),$rp
inc $num
jnz .Lsub4x
ret
___
}
$code.=<<___;
.cfi_endproc
.size mul4x_internal,.-mul4x_internal
___
}}}
{{{
######################################################################
# void bn_power5(
my $rptr="%rdi"; # BN_ULONG *rptr,
my $aptr="%rsi"; # const BN_ULONG *aptr,
my $bptr="%rdx"; # const void *table,
my $nptr="%rcx"; # const BN_ULONG *nptr,
my $n0 ="%r8"; # const BN_ULONG *n0);
my $num ="%r9"; # int num, has to be divisible by 8
# int pwr
my ($i,$j,$tptr)=("%rbp","%rcx",$rptr);
my @A0=("%r10","%r11");
my @A1=("%r12","%r13");
my ($a0,$a1,$ai)=("%r14","%r15","%rbx");
$code.=<<___;
.globl bn_power5
.type bn_power5,\@function,6
.align 32
bn_power5:
.cfi_startproc
mov %rsp,%rax
.cfi_def_cfa_register %rax
___
$code.=<<___ if ($addx);
mov OPENSSL_ia32cap_P+8(%rip),%r11d
and \$0x80108,%r11d
cmp \$0x80108,%r11d # check for AD*X+BMI2+BMI1
je .Lpowerx5_enter
___
$code.=<<___;
push %rbx
.cfi_push %rbx
push %rbp
.cfi_push %rbp
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lpower5_prologue:
shl \$3,${num}d # convert $num to bytes
lea ($num,$num,2),%r10d # 3*$num
neg $num
mov ($n0),$n0 # *n0
##############################################################
# Ensure that stack frame doesn't alias with $rptr+3*$num
# modulo 4096, which covers ret[num], am[num] and n[num]
# (see bn_exp.c). This is done to allow memory disambiguation
# logic do its magic. [Extra 256 bytes is for power mask
# calculated from 7th argument, the index.]
#
lea -320(%rsp,$num,2),%r11
mov %rsp,%rbp
sub $rptr,%r11
and \$4095,%r11
cmp %r11,%r10
jb .Lpwr_sp_alt
sub %r11,%rbp # align with $aptr
lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256)
jmp .Lpwr_sp_done
.align 32
.Lpwr_sp_alt:
lea 4096-320(,$num,2),%r10
lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256)
sub %r10,%r11
mov \$0,%r10
cmovc %r10,%r11
sub %r11,%rbp
.Lpwr_sp_done:
and \$-64,%rbp
mov %rsp,%r11
sub %rbp,%r11
and \$-4096,%r11
lea (%rbp,%r11),%rsp
mov (%rsp),%r10
cmp %rbp,%rsp
ja .Lpwr_page_walk
jmp .Lpwr_page_walk_done
.Lpwr_page_walk:
lea -4096(%rsp),%rsp
mov (%rsp),%r10
cmp %rbp,%rsp
ja .Lpwr_page_walk
.Lpwr_page_walk_done:
mov $num,%r10
neg $num
##############################################################
# Stack layout
#
# +0 saved $num, used in reduction section
# +8 &t[2*$num], used in reduction section
# +32 saved *n0
# +40 saved %rsp
# +48 t[2*$num]
#
mov $n0, 32(%rsp)
mov %rax, 40(%rsp) # save original %rsp
.cfi_cfa_expression %rsp+40,deref,+8
.Lpower5_body:
movq $rptr,%xmm1 # save $rptr, used in sqr8x
movq $nptr,%xmm2 # save $nptr
movq %r10, %xmm3 # -$num, used in sqr8x
movq $bptr,%xmm4
call __bn_sqr8x_internal
call __bn_post4x_internal
call __bn_sqr8x_internal
call __bn_post4x_internal
call __bn_sqr8x_internal
call __bn_post4x_internal
call __bn_sqr8x_internal
call __bn_post4x_internal
call __bn_sqr8x_internal
call __bn_post4x_internal
movq %xmm2,$nptr
movq %xmm4,$bptr
mov $aptr,$rptr
mov 40(%rsp),%rax
lea 32(%rsp),$n0
call mul4x_internal
mov 40(%rsp),%rsi # restore %rsp
.cfi_def_cfa %rsi,8
mov \$1,%rax
mov -48(%rsi),%r15
.cfi_restore %r15
mov -40(%rsi),%r14
.cfi_restore %r14
mov -32(%rsi),%r13
.cfi_restore %r13
mov -24(%rsi),%r12
.cfi_restore %r12
mov -16(%rsi),%rbp
.cfi_restore %rbp
mov -8(%rsi),%rbx
.cfi_restore %rbx
lea (%rsi),%rsp
.cfi_def_cfa_register %rsp
.Lpower5_epilogue:
ret
.cfi_endproc
.size bn_power5,.-bn_power5
.globl bn_sqr8x_internal
.hidden bn_sqr8x_internal
.type bn_sqr8x_internal,\@abi-omnipotent
.align 32
bn_sqr8x_internal:
__bn_sqr8x_internal:
.cfi_startproc
##############################################################
# Squaring part:
#
# a) multiply-n-add everything but a[i]*a[i];
# b) shift result of a) by 1 to the left and accumulate
# a[i]*a[i] products;
#
##############################################################
# a[1]a[0]
# a[2]a[0]
# a[3]a[0]
# a[2]a[1]
# a[4]a[0]
# a[3]a[1]
# a[5]a[0]
# a[4]a[1]
# a[3]a[2]
# a[6]a[0]
# a[5]a[1]
# a[4]a[2]
# a[7]a[0]
# a[6]a[1]
# a[5]a[2]
# a[4]a[3]
# a[7]a[1]
# a[6]a[2]
# a[5]a[3]
# a[7]a[2]
# a[6]a[3]
# a[5]a[4]
# a[7]a[3]
# a[6]a[4]
# a[7]a[4]
# a[6]a[5]
# a[7]a[5]
# a[7]a[6]
# a[1]a[0]
# a[2]a[0]
# a[3]a[0]
# a[4]a[0]
# a[5]a[0]
# a[6]a[0]
# a[7]a[0]
# a[2]a[1]
# a[3]a[1]
# a[4]a[1]
# a[5]a[1]
# a[6]a[1]
# a[7]a[1]
# a[3]a[2]
# a[4]a[2]
# a[5]a[2]
# a[6]a[2]
# a[7]a[2]
# a[4]a[3]
# a[5]a[3]
# a[6]a[3]
# a[7]a[3]
# a[5]a[4]
# a[6]a[4]
# a[7]a[4]
# a[6]a[5]
# a[7]a[5]
# a[7]a[6]
# a[0]a[0]
# a[1]a[1]
# a[2]a[2]
# a[3]a[3]
# a[4]a[4]
# a[5]a[5]
# a[6]a[6]
# a[7]a[7]
lea 32(%r10),$i # $i=-($num-32)
lea ($aptr,$num),$aptr # end of a[] buffer, ($aptr,$i)=&ap[2]
mov $num,$j # $j=$num
# comments apply to $num==8 case
mov -32($aptr,$i),$a0 # a[0]
lea 48+8(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num]
mov -24($aptr,$i),%rax # a[1]
lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"]
mov -16($aptr,$i),$ai # a[2]
mov %rax,$a1
mul $a0 # a[1]*a[0]
mov %rax,$A0[0] # a[1]*a[0]
mov $ai,%rax # a[2]
mov %rdx,$A0[1]
mov $A0[0],-24($tptr,$i) # t[1]
mul $a0 # a[2]*a[0]
add %rax,$A0[1]
mov $ai,%rax
adc \$0,%rdx
mov $A0[1],-16($tptr,$i) # t[2]
mov %rdx,$A0[0]
mov -8($aptr,$i),$ai # a[3]
mul $a1 # a[2]*a[1]
mov %rax,$A1[0] # a[2]*a[1]+t[3]
mov $ai,%rax
mov %rdx,$A1[1]
lea ($i),$j
mul $a0 # a[3]*a[0]
add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3]
mov $ai,%rax
mov %rdx,$A0[1]
adc \$0,$A0[1]
add $A1[0],$A0[0]
adc \$0,$A0[1]
mov $A0[0],-8($tptr,$j) # t[3]
jmp .Lsqr4x_1st
.align 32
.Lsqr4x_1st:
mov ($aptr,$j),$ai # a[4]
mul $a1 # a[3]*a[1]
add %rax,$A1[1] # a[3]*a[1]+t[4]
mov $ai,%rax
mov %rdx,$A1[0]
adc \$0,$A1[0]
mul $a0 # a[4]*a[0]
add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4]
mov $ai,%rax # a[3]
mov 8($aptr,$j),$ai # a[5]
mov %rdx,$A0[0]
adc \$0,$A0[0]
add $A1[1],$A0[1]
adc \$0,$A0[0]
mul $a1 # a[4]*a[3]
add %rax,$A1[0] # a[4]*a[3]+t[5]
mov $ai,%rax
mov $A0[1],($tptr,$j) # t[4]
mov %rdx,$A1[1]
adc \$0,$A1[1]
mul $a0 # a[5]*a[2]
add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5]
mov $ai,%rax
mov 16($aptr,$j),$ai # a[6]
mov %rdx,$A0[1]
adc \$0,$A0[1]
add $A1[0],$A0[0]
adc \$0,$A0[1]
mul $a1 # a[5]*a[3]
add %rax,$A1[1] # a[5]*a[3]+t[6]
mov $ai,%rax
mov $A0[0],8($tptr,$j) # t[5]
mov %rdx,$A1[0]
adc \$0,$A1[0]
mul $a0 # a[6]*a[2]
add %rax,$A0[1] # a[6]*a[2]+a[5]*a[3]+t[6]
mov $ai,%rax # a[3]
mov 24($aptr,$j),$ai # a[7]
mov %rdx,$A0[0]
adc \$0,$A0[0]
add $A1[1],$A0[1]
adc \$0,$A0[0]
mul $a1 # a[6]*a[5]
add %rax,$A1[0] # a[6]*a[5]+t[7]
mov $ai,%rax
mov $A0[1],16($tptr,$j) # t[6]
mov %rdx,$A1[1]
adc \$0,$A1[1]
lea 32($j),$j
mul $a0 # a[7]*a[4]
add %rax,$A0[0] # a[7]*a[4]+a[6]*a[5]+t[6]
mov $ai,%rax
mov %rdx,$A0[1]
adc \$0,$A0[1]
add $A1[0],$A0[0]
adc \$0,$A0[1]
mov $A0[0],-8($tptr,$j) # t[7]
cmp \$0,$j
jne .Lsqr4x_1st
mul $a1 # a[7]*a[5]
add %rax,$A1[1]
lea 16($i),$i
adc \$0,%rdx
add $A0[1],$A1[1]
adc \$0,%rdx
mov $A1[1],($tptr) # t[8]
mov %rdx,$A1[0]
mov %rdx,8($tptr) # t[9]
jmp .Lsqr4x_outer
.align 32
.Lsqr4x_outer: # comments apply to $num==6 case
mov -32($aptr,$i),$a0 # a[0]
lea 48+8(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num]
mov -24($aptr,$i),%rax # a[1]
lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"]
mov -16($aptr,$i),$ai # a[2]
mov %rax,$a1
mul $a0 # a[1]*a[0]
mov -24($tptr,$i),$A0[0] # t[1]
add %rax,$A0[0] # a[1]*a[0]+t[1]
mov $ai,%rax # a[2]
adc \$0,%rdx
mov $A0[0],-24($tptr,$i) # t[1]
mov %rdx,$A0[1]
mul $a0 # a[2]*a[0]
add %rax,$A0[1]
mov $ai,%rax
adc \$0,%rdx
add -16($tptr,$i),$A0[1] # a[2]*a[0]+t[2]
mov %rdx,$A0[0]
adc \$0,$A0[0]
mov $A0[1],-16($tptr,$i) # t[2]
xor $A1[0],$A1[0]
mov -8($aptr,$i),$ai # a[3]
mul $a1 # a[2]*a[1]
add %rax,$A1[0] # a[2]*a[1]+t[3]
mov $ai,%rax
adc \$0,%rdx
add -8($tptr,$i),$A1[0]
mov %rdx,$A1[1]
adc \$0,$A1[1]
mul $a0 # a[3]*a[0]
add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3]
mov $ai,%rax
adc \$0,%rdx
add $A1[0],$A0[0]
mov %rdx,$A0[1]
adc \$0,$A0[1]
mov $A0[0],-8($tptr,$i) # t[3]
lea ($i),$j
jmp .Lsqr4x_inner
.align 32
.Lsqr4x_inner:
mov ($aptr,$j),$ai # a[4]
mul $a1 # a[3]*a[1]
add %rax,$A1[1] # a[3]*a[1]+t[4]
mov $ai,%rax
mov %rdx,$A1[0]
adc \$0,$A1[0]
add ($tptr,$j),$A1[1]
adc \$0,$A1[0]
.byte 0x67
mul $a0 # a[4]*a[0]
add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4]
mov $ai,%rax # a[3]
mov 8($aptr,$j),$ai # a[5]
mov %rdx,$A0[0]
adc \$0,$A0[0]
add $A1[1],$A0[1]
adc \$0,$A0[0]
mul $a1 # a[4]*a[3]
add %rax,$A1[0] # a[4]*a[3]+t[5]
mov $A0[1],($tptr,$j) # t[4]
mov $ai,%rax
mov %rdx,$A1[1]
adc \$0,$A1[1]
add 8($tptr,$j),$A1[0]
lea 16($j),$j # j++
adc \$0,$A1[1]
mul $a0 # a[5]*a[2]
add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5]
mov $ai,%rax
adc \$0,%rdx
add $A1[0],$A0[0]
mov %rdx,$A0[1]
adc \$0,$A0[1]
mov $A0[0],-8($tptr,$j) # t[5], "preloaded t[1]" below
cmp \$0,$j
jne .Lsqr4x_inner
.byte 0x67
mul $a1 # a[5]*a[3]
add %rax,$A1[1]
adc \$0,%rdx
add $A0[1],$A1[1]
adc \$0,%rdx
mov $A1[1],($tptr) # t[6], "preloaded t[2]" below
mov %rdx,$A1[0]
mov %rdx,8($tptr) # t[7], "preloaded t[3]" below
add \$16,$i
jnz .Lsqr4x_outer
# comments apply to $num==4 case
mov -32($aptr),$a0 # a[0]
lea 48+8(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num]
mov -24($aptr),%rax # a[1]
lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"]
mov -16($aptr),$ai # a[2]
mov %rax,$a1
mul $a0 # a[1]*a[0]
add %rax,$A0[0] # a[1]*a[0]+t[1], preloaded t[1]
mov $ai,%rax # a[2]
mov %rdx,$A0[1]
adc \$0,$A0[1]
mul $a0 # a[2]*a[0]
add %rax,$A0[1]
mov $ai,%rax
mov $A0[0],-24($tptr) # t[1]
mov %rdx,$A0[0]
adc \$0,$A0[0]
add $A1[1],$A0[1] # a[2]*a[0]+t[2], preloaded t[2]
mov -8($aptr),$ai # a[3]
adc \$0,$A0[0]
mul $a1 # a[2]*a[1]
add %rax,$A1[0] # a[2]*a[1]+t[3], preloaded t[3]
mov $ai,%rax
mov $A0[1],-16($tptr) # t[2]
mov %rdx,$A1[1]
adc \$0,$A1[1]
mul $a0 # a[3]*a[0]
add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3]
mov $ai,%rax
mov %rdx,$A0[1]
adc \$0,$A0[1]
add $A1[0],$A0[0]
adc \$0,$A0[1]
mov $A0[0],-8($tptr) # t[3]
mul $a1 # a[3]*a[1]
add %rax,$A1[1]
mov -16($aptr),%rax # a[2]
adc \$0,%rdx
add $A0[1],$A1[1]
adc \$0,%rdx
mov $A1[1],($tptr) # t[4]
mov %rdx,$A1[0]
mov %rdx,8($tptr) # t[5]
mul $ai # a[2]*a[3]
___
{
my ($shift,$carry)=($a0,$a1);
my @S=(@A1,$ai,$n0);
$code.=<<___;
add \$16,$i
xor $shift,$shift
sub $num,$i # $i=16-$num
xor $carry,$carry
add $A1[0],%rax # t[5]
adc \$0,%rdx
mov %rax,8($tptr) # t[5]
mov %rdx,16($tptr) # t[6]
mov $carry,24($tptr) # t[7]
mov -16($aptr,$i),%rax # a[0]
lea 48+8(%rsp),$tptr
xor $A0[0],$A0[0] # t[0]
mov 8($tptr),$A0[1] # t[1]
lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift
shr \$63,$A0[0]
lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 |
shr \$63,$A0[1]
or $A0[0],$S[1] # | t[2*i]>>63
mov 16($tptr),$A0[0] # t[2*i+2] # prefetch
mov $A0[1],$shift # shift=t[2*i+1]>>63
mul %rax # a[i]*a[i]
neg $carry # mov $carry,cf
mov 24($tptr),$A0[1] # t[2*i+2+1] # prefetch
adc %rax,$S[0]
mov -8($aptr,$i),%rax # a[i+1] # prefetch
mov $S[0],($tptr)
adc %rdx,$S[1]
lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift
mov $S[1],8($tptr)
sbb $carry,$carry # mov cf,$carry
shr \$63,$A0[0]
lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 |
shr \$63,$A0[1]
or $A0[0],$S[3] # | t[2*i]>>63
mov 32($tptr),$A0[0] # t[2*i+2] # prefetch
mov $A0[1],$shift # shift=t[2*i+1]>>63
mul %rax # a[i]*a[i]
neg $carry # mov $carry,cf
mov 40($tptr),$A0[1] # t[2*i+2+1] # prefetch
adc %rax,$S[2]
mov 0($aptr,$i),%rax # a[i+1] # prefetch
mov $S[2],16($tptr)
adc %rdx,$S[3]
lea 16($i),$i
mov $S[3],24($tptr)
sbb $carry,$carry # mov cf,$carry
lea 64($tptr),$tptr
jmp .Lsqr4x_shift_n_add
.align 32
.Lsqr4x_shift_n_add:
lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift
shr \$63,$A0[0]
lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 |
shr \$63,$A0[1]
or $A0[0],$S[1] # | t[2*i]>>63
mov -16($tptr),$A0[0] # t[2*i+2] # prefetch
mov $A0[1],$shift # shift=t[2*i+1]>>63
mul %rax # a[i]*a[i]
neg $carry # mov $carry,cf
mov -8($tptr),$A0[1] # t[2*i+2+1] # prefetch
adc %rax,$S[0]
mov -8($aptr,$i),%rax # a[i+1] # prefetch
mov $S[0],-32($tptr)
adc %rdx,$S[1]
lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift
mov $S[1],-24($tptr)
sbb $carry,$carry # mov cf,$carry
shr \$63,$A0[0]
lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 |
shr \$63,$A0[1]
or $A0[0],$S[3] # | t[2*i]>>63
mov 0($tptr),$A0[0] # t[2*i+2] # prefetch
mov $A0[1],$shift # shift=t[2*i+1]>>63
mul %rax # a[i]*a[i]
neg $carry # mov $carry,cf
mov 8($tptr),$A0[1] # t[2*i+2+1] # prefetch
adc %rax,$S[2]
mov 0($aptr,$i),%rax # a[i+1] # prefetch
mov $S[2],-16($tptr)
adc %rdx,$S[3]
lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift
mov $S[3],-8($tptr)
sbb $carry,$carry # mov cf,$carry
shr \$63,$A0[0]
lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 |
shr \$63,$A0[1]
or $A0[0],$S[1] # | t[2*i]>>63
mov 16($tptr),$A0[0] # t[2*i+2] # prefetch
mov $A0[1],$shift # shift=t[2*i+1]>>63
mul %rax # a[i]*a[i]
neg $carry # mov $carry,cf
mov 24($tptr),$A0[1] # t[2*i+2+1] # prefetch
adc %rax,$S[0]
mov 8($aptr,$i),%rax # a[i+1] # prefetch
mov $S[0],0($tptr)
adc %rdx,$S[1]
lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift
mov $S[1],8($tptr)
sbb $carry,$carry # mov cf,$carry
shr \$63,$A0[0]
lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 |
shr \$63,$A0[1]
or $A0[0],$S[3] # | t[2*i]>>63
mov 32($tptr),$A0[0] # t[2*i+2] # prefetch
mov $A0[1],$shift # shift=t[2*i+1]>>63
mul %rax # a[i]*a[i]
neg $carry # mov $carry,cf
mov 40($tptr),$A0[1] # t[2*i+2+1] # prefetch
adc %rax,$S[2]
mov 16($aptr,$i),%rax # a[i+1] # prefetch
mov $S[2],16($tptr)
adc %rdx,$S[3]
mov $S[3],24($tptr)
sbb $carry,$carry # mov cf,$carry
lea 64($tptr),$tptr
add \$32,$i
jnz .Lsqr4x_shift_n_add
lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift
.byte 0x67
shr \$63,$A0[0]
lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 |
shr \$63,$A0[1]
or $A0[0],$S[1] # | t[2*i]>>63
mov -16($tptr),$A0[0] # t[2*i+2] # prefetch
mov $A0[1],$shift # shift=t[2*i+1]>>63
mul %rax # a[i]*a[i]
neg $carry # mov $carry,cf
mov -8($tptr),$A0[1] # t[2*i+2+1] # prefetch
adc %rax,$S[0]
mov -8($aptr),%rax # a[i+1] # prefetch
mov $S[0],-32($tptr)
adc %rdx,$S[1]
lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1|shift
mov $S[1],-24($tptr)
sbb $carry,$carry # mov cf,$carry
shr \$63,$A0[0]
lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 |
shr \$63,$A0[1]
or $A0[0],$S[3] # | t[2*i]>>63
mul %rax # a[i]*a[i]
neg $carry # mov $carry,cf
adc %rax,$S[2]
adc %rdx,$S[3]
mov $S[2],-16($tptr)
mov $S[3],-8($tptr)
___
}
######################################################################
# Montgomery reduction part, "word-by-word" algorithm.
#
# This new path is inspired by multiple submissions from Intel, by
# Shay Gueron, Vlad Krasnov, Erdinc Ozturk, James Guilford,
# Vinodh Gopal...
{
my ($nptr,$tptr,$carry,$m0)=("%rbp","%rdi","%rsi","%rbx");
$code.=<<___;
movq %xmm2,$nptr
__bn_sqr8x_reduction:
xor %rax,%rax
lea ($nptr,$num),%rcx # end of n[]
lea 48+8(%rsp,$num,2),%rdx # end of t[] buffer
mov %rcx,0+8(%rsp)
lea 48+8(%rsp,$num),$tptr # end of initial t[] window
mov %rdx,8+8(%rsp)
neg $num
jmp .L8x_reduction_loop
.align 32
.L8x_reduction_loop:
lea ($tptr,$num),$tptr # start of current t[] window
.byte 0x66
mov 8*0($tptr),$m0
mov 8*1($tptr),%r9
mov 8*2($tptr),%r10
mov 8*3($tptr),%r11
mov 8*4($tptr),%r12
mov 8*5($tptr),%r13
mov 8*6($tptr),%r14
mov 8*7($tptr),%r15
mov %rax,(%rdx) # store top-most carry bit
lea 8*8($tptr),$tptr
.byte 0x67
mov $m0,%r8
imulq 32+8(%rsp),$m0 # n0*a[0]
mov 8*0($nptr),%rax # n[0]
mov \$8,%ecx
jmp .L8x_reduce
.align 32
.L8x_reduce:
mulq $m0
mov 8*1($nptr),%rax # n[1]
neg %r8
mov %rdx,%r8
adc \$0,%r8
mulq $m0
add %rax,%r9
mov 8*2($nptr),%rax
adc \$0,%rdx
add %r9,%r8
mov $m0,48-8+8(%rsp,%rcx,8) # put aside n0*a[i]
mov %rdx,%r9
adc \$0,%r9
mulq $m0
add %rax,%r10
mov 8*3($nptr),%rax
adc \$0,%rdx
add %r10,%r9
mov 32+8(%rsp),$carry # pull n0, borrow $carry
mov %rdx,%r10
adc \$0,%r10
mulq $m0
add %rax,%r11
mov 8*4($nptr),%rax
adc \$0,%rdx
imulq %r8,$carry # modulo-scheduled
add %r11,%r10
mov %rdx,%r11
adc \$0,%r11
mulq $m0
add %rax,%r12
mov 8*5($nptr),%rax
adc \$0,%rdx
add %r12,%r11
mov %rdx,%r12
adc \$0,%r12
mulq $m0
add %rax,%r13
mov 8*6($nptr),%rax
adc \$0,%rdx
add %r13,%r12
mov %rdx,%r13
adc \$0,%r13
mulq $m0
add %rax,%r14
mov 8*7($nptr),%rax
adc \$0,%rdx
add %r14,%r13
mov %rdx,%r14
adc \$0,%r14
mulq $m0
mov $carry,$m0 # n0*a[i]
add %rax,%r15
mov 8*0($nptr),%rax # n[0]
adc \$0,%rdx
add %r15,%r14
mov %rdx,%r15
adc \$0,%r15
dec %ecx
jnz .L8x_reduce
lea 8*8($nptr),$nptr
xor %rax,%rax
mov 8+8(%rsp),%rdx # pull end of t[]
cmp 0+8(%rsp),$nptr # end of n[]?
jae .L8x_no_tail
.byte 0x66
add 8*0($tptr),%r8
adc 8*1($tptr),%r9
adc 8*2($tptr),%r10
adc 8*3($tptr),%r11
adc 8*4($tptr),%r12
adc 8*5($tptr),%r13
adc 8*6($tptr),%r14
adc 8*7($tptr),%r15
sbb $carry,$carry # top carry
mov 48+56+8(%rsp),$m0 # pull n0*a[0]
mov \$8,%ecx
mov 8*0($nptr),%rax
jmp .L8x_tail
.align 32
.L8x_tail:
mulq $m0
add %rax,%r8
mov 8*1($nptr),%rax
mov %r8,($tptr) # save result
mov %rdx,%r8
adc \$0,%r8
mulq $m0
add %rax,%r9
mov 8*2($nptr),%rax
adc \$0,%rdx
add %r9,%r8
lea 8($tptr),$tptr # $tptr++
mov %rdx,%r9
adc \$0,%r9
mulq $m0
add %rax,%r10
mov 8*3($nptr),%rax
adc \$0,%rdx
add %r10,%r9
mov %rdx,%r10
adc \$0,%r10
mulq $m0
add %rax,%r11
mov 8*4($nptr),%rax
adc \$0,%rdx
add %r11,%r10
mov %rdx,%r11
adc \$0,%r11
mulq $m0
add %rax,%r12
mov 8*5($nptr),%rax
adc \$0,%rdx
add %r12,%r11
mov %rdx,%r12
adc \$0,%r12
mulq $m0
add %rax,%r13
mov 8*6($nptr),%rax
adc \$0,%rdx
add %r13,%r12
mov %rdx,%r13
adc \$0,%r13
mulq $m0
add %rax,%r14
mov 8*7($nptr),%rax
adc \$0,%rdx
add %r14,%r13
mov %rdx,%r14
adc \$0,%r14
mulq $m0
mov 48-16+8(%rsp,%rcx,8),$m0# pull n0*a[i]
add %rax,%r15
adc \$0,%rdx
add %r15,%r14
mov 8*0($nptr),%rax # pull n[0]
mov %rdx,%r15
adc \$0,%r15
dec %ecx
jnz .L8x_tail
lea 8*8($nptr),$nptr
mov 8+8(%rsp),%rdx # pull end of t[]
cmp 0+8(%rsp),$nptr # end of n[]?
jae .L8x_tail_done # break out of loop
mov 48+56+8(%rsp),$m0 # pull n0*a[0]
neg $carry
mov 8*0($nptr),%rax # pull n[0]
adc 8*0($tptr),%r8
adc 8*1($tptr),%r9
adc 8*2($tptr),%r10
adc 8*3($tptr),%r11
adc 8*4($tptr),%r12
adc 8*5($tptr),%r13
adc 8*6($tptr),%r14
adc 8*7($tptr),%r15
sbb $carry,$carry # top carry
mov \$8,%ecx
jmp .L8x_tail
.align 32
.L8x_tail_done:
xor %rax,%rax
add (%rdx),%r8 # can this overflow?
adc \$0,%r9
adc \$0,%r10
adc \$0,%r11
adc \$0,%r12
adc \$0,%r13
adc \$0,%r14
adc \$0,%r15
adc \$0,%rax
neg $carry
.L8x_no_tail:
adc 8*0($tptr),%r8
adc 8*1($tptr),%r9
adc 8*2($tptr),%r10
adc 8*3($tptr),%r11
adc 8*4($tptr),%r12
adc 8*5($tptr),%r13
adc 8*6($tptr),%r14
adc 8*7($tptr),%r15
adc \$0,%rax # top-most carry
mov -8($nptr),%rcx # np[num-1]
xor $carry,$carry
movq %xmm2,$nptr # restore $nptr
mov %r8,8*0($tptr) # store top 512 bits
mov %r9,8*1($tptr)
movq %xmm3,$num # $num is %r9, can't be moved upwards
mov %r10,8*2($tptr)
mov %r11,8*3($tptr)
mov %r12,8*4($tptr)
mov %r13,8*5($tptr)
mov %r14,8*6($tptr)
mov %r15,8*7($tptr)
lea 8*8($tptr),$tptr
cmp %rdx,$tptr # end of t[]?
jb .L8x_reduction_loop
ret
.cfi_endproc
.size bn_sqr8x_internal,.-bn_sqr8x_internal
___
}
##############################################################
# Post-condition, 4x unrolled
#
{
my ($tptr,$nptr)=("%rbx","%rbp");
$code.=<<___;
.type __bn_post4x_internal,\@abi-omnipotent
.align 32
__bn_post4x_internal:
.cfi_startproc
mov 8*0($nptr),%r12
lea (%rdi,$num),$tptr # %rdi was $tptr above
mov $num,%rcx
movq %xmm1,$rptr # restore $rptr
neg %rax
movq %xmm1,$aptr # prepare for back-to-back call
sar \$3+2,%rcx
dec %r12 # so that after 'not' we get -n[0]
xor %r10,%r10
mov 8*1($nptr),%r13
mov 8*2($nptr),%r14
mov 8*3($nptr),%r15
jmp .Lsqr4x_sub_entry
.align 16
.Lsqr4x_sub:
mov 8*0($nptr),%r12
mov 8*1($nptr),%r13
mov 8*2($nptr),%r14
mov 8*3($nptr),%r15
.Lsqr4x_sub_entry:
lea 8*4($nptr),$nptr
not %r12
not %r13
not %r14
not %r15
and %rax,%r12
and %rax,%r13
and %rax,%r14
and %rax,%r15
neg %r10 # mov %r10,%cf
adc 8*0($tptr),%r12
adc 8*1($tptr),%r13
adc 8*2($tptr),%r14
adc 8*3($tptr),%r15
mov %r12,8*0($rptr)
lea 8*4($tptr),$tptr
mov %r13,8*1($rptr)
sbb %r10,%r10 # mov %cf,%r10
mov %r14,8*2($rptr)
mov %r15,8*3($rptr)
lea 8*4($rptr),$rptr
inc %rcx # pass %cf
jnz .Lsqr4x_sub
mov $num,%r10 # prepare for back-to-back call
neg $num # restore $num
ret
.cfi_endproc
.size __bn_post4x_internal,.-__bn_post4x_internal
___
}
}}}
if ($addx) {{{
my $bp="%rdx"; # restore original value
$code.=<<___;
.type bn_mulx4x_mont_gather5,\@function,6
.align 32
bn_mulx4x_mont_gather5:
.cfi_startproc
mov %rsp,%rax
.cfi_def_cfa_register %rax
.Lmulx4x_enter:
push %rbx
.cfi_push %rbx
push %rbp
.cfi_push %rbp
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lmulx4x_prologue:
shl \$3,${num}d # convert $num to bytes
lea ($num,$num,2),%r10 # 3*$num in bytes
neg $num # -$num
mov ($n0),$n0 # *n0
##############################################################
# Ensure that stack frame doesn't alias with $rptr+3*$num
# modulo 4096, which covers ret[num], am[num] and n[num]
# (see bn_exp.c). This is done to allow memory disambiguation
# logic do its magic. [Extra [num] is allocated in order
# to align with bn_power5's frame, which is cleansed after
# completing exponentiation. Extra 256 bytes is for power mask
# calculated from 7th argument, the index.]
#
lea -320(%rsp,$num,2),%r11
mov %rsp,%rbp
sub $rp,%r11
and \$4095,%r11
cmp %r11,%r10
jb .Lmulx4xsp_alt
sub %r11,%rbp # align with $aptr
lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256)
jmp .Lmulx4xsp_done
.Lmulx4xsp_alt:
lea 4096-320(,$num,2),%r10
lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256)
sub %r10,%r11
mov \$0,%r10
cmovc %r10,%r11
sub %r11,%rbp
.Lmulx4xsp_done:
and \$-64,%rbp # ensure alignment
mov %rsp,%r11
sub %rbp,%r11
and \$-4096,%r11
lea (%rbp,%r11),%rsp
mov (%rsp),%r10
cmp %rbp,%rsp
ja .Lmulx4x_page_walk
jmp .Lmulx4x_page_walk_done
.Lmulx4x_page_walk:
lea -4096(%rsp),%rsp
mov (%rsp),%r10
cmp %rbp,%rsp
ja .Lmulx4x_page_walk
.Lmulx4x_page_walk_done:
##############################################################
# Stack layout
# +0 -num
# +8 off-loaded &b[i]
# +16 end of b[num]
# +24 inner counter
# +32 saved n0
# +40 saved %rsp
# +48
# +56 saved rp
# +64 tmp[num+1]
#
mov $n0, 32(%rsp) # save *n0
mov %rax,40(%rsp) # save original %rsp
.cfi_cfa_expression %rsp+40,deref,+8
.Lmulx4x_body:
call mulx4x_internal
mov 40(%rsp),%rsi # restore %rsp
.cfi_def_cfa %rsi,8
mov \$1,%rax
mov -48(%rsi),%r15
.cfi_restore %r15
mov -40(%rsi),%r14
.cfi_restore %r14
mov -32(%rsi),%r13
.cfi_restore %r13
mov -24(%rsi),%r12
.cfi_restore %r12
mov -16(%rsi),%rbp
.cfi_restore %rbp
mov -8(%rsi),%rbx
.cfi_restore %rbx
lea (%rsi),%rsp
.cfi_def_cfa_register %rsp
.Lmulx4x_epilogue:
ret
.cfi_endproc
.size bn_mulx4x_mont_gather5,.-bn_mulx4x_mont_gather5
.type mulx4x_internal,\@abi-omnipotent
.align 32
mulx4x_internal:
.cfi_startproc
mov $num,8(%rsp) # save -$num (it was in bytes)
mov $num,%r10
neg $num # restore $num
shl \$5,$num
neg %r10 # restore $num
lea 128($bp,$num),%r13 # end of powers table (+size optimization)
shr \$5+5,$num
movd `($win64?56:8)`(%rax),%xmm5 # load 7th argument
sub \$1,$num
lea .Linc(%rip),%rax
mov %r13,16+8(%rsp) # end of b[num]
mov $num,24+8(%rsp) # inner counter
mov $rp, 56+8(%rsp) # save $rp
___
my ($aptr, $bptr, $nptr, $tptr, $mi, $bi, $zero, $num)=
("%rsi","%rdi","%rcx","%rbx","%r8","%r9","%rbp","%rax");
my $rptr=$bptr;
my $STRIDE=2**5*8; # 5 is "window size"
my $N=$STRIDE/4; # should match cache line size
$code.=<<___;
movdqa 0(%rax),%xmm0 # 00000001000000010000000000000000
movdqa 16(%rax),%xmm1 # 00000002000000020000000200000002
lea 88-112(%rsp,%r10),%r10 # place the mask after tp[num+1] (+ICache optimization)
lea 128($bp),$bptr # size optimization
pshufd \$0,%xmm5,%xmm5 # broadcast index
movdqa %xmm1,%xmm4
.byte 0x67
movdqa %xmm1,%xmm2
___
########################################################################
# calculate mask by comparing 0..31 to index and save result to stack
#
$code.=<<___;
.byte 0x67
paddd %xmm0,%xmm1
pcmpeqd %xmm5,%xmm0 # compare to 1,0
movdqa %xmm4,%xmm3
___
for($i=0;$i<$STRIDE/16-4;$i+=4) {
$code.=<<___;
paddd %xmm1,%xmm2
pcmpeqd %xmm5,%xmm1 # compare to 3,2
movdqa %xmm0,`16*($i+0)+112`(%r10)
movdqa %xmm4,%xmm0
paddd %xmm2,%xmm3
pcmpeqd %xmm5,%xmm2 # compare to 5,4
movdqa %xmm1,`16*($i+1)+112`(%r10)
movdqa %xmm4,%xmm1
paddd %xmm3,%xmm0
pcmpeqd %xmm5,%xmm3 # compare to 7,6
movdqa %xmm2,`16*($i+2)+112`(%r10)
movdqa %xmm4,%xmm2
paddd %xmm0,%xmm1
pcmpeqd %xmm5,%xmm0
movdqa %xmm3,`16*($i+3)+112`(%r10)
movdqa %xmm4,%xmm3
___
}
$code.=<<___; # last iteration can be optimized
.byte 0x67
paddd %xmm1,%xmm2
pcmpeqd %xmm5,%xmm1
movdqa %xmm0,`16*($i+0)+112`(%r10)
paddd %xmm2,%xmm3
pcmpeqd %xmm5,%xmm2
movdqa %xmm1,`16*($i+1)+112`(%r10)
pcmpeqd %xmm5,%xmm3
movdqa %xmm2,`16*($i+2)+112`(%r10)
pand `16*($i+0)-128`($bptr),%xmm0 # while it's still in register
pand `16*($i+1)-128`($bptr),%xmm1
pand `16*($i+2)-128`($bptr),%xmm2
movdqa %xmm3,`16*($i+3)+112`(%r10)
pand `16*($i+3)-128`($bptr),%xmm3
por %xmm2,%xmm0
por %xmm3,%xmm1
___
for($i=0;$i<$STRIDE/16-4;$i+=4) {
$code.=<<___;
movdqa `16*($i+0)-128`($bptr),%xmm4
movdqa `16*($i+1)-128`($bptr),%xmm5
movdqa `16*($i+2)-128`($bptr),%xmm2
pand `16*($i+0)+112`(%r10),%xmm4
movdqa `16*($i+3)-128`($bptr),%xmm3
pand `16*($i+1)+112`(%r10),%xmm5
por %xmm4,%xmm0
pand `16*($i+2)+112`(%r10),%xmm2
por %xmm5,%xmm1
pand `16*($i+3)+112`(%r10),%xmm3
por %xmm2,%xmm0
por %xmm3,%xmm1
___
}
$code.=<<___;
pxor %xmm1,%xmm0
pshufd \$0x4e,%xmm0,%xmm1
por %xmm1,%xmm0
lea $STRIDE($bptr),$bptr
movq %xmm0,%rdx # bp[0]
lea 64+8*4+8(%rsp),$tptr
mov %rdx,$bi
mulx 0*8($aptr),$mi,%rax # a[0]*b[0]
mulx 1*8($aptr),%r11,%r12 # a[1]*b[0]
add %rax,%r11
mulx 2*8($aptr),%rax,%r13 # ...
adc %rax,%r12
adc \$0,%r13
mulx 3*8($aptr),%rax,%r14
mov $mi,%r15
imulq 32+8(%rsp),$mi # "t[0]"*n0
xor $zero,$zero # cf=0, of=0
mov $mi,%rdx
mov $bptr,8+8(%rsp) # off-load &b[i]
lea 4*8($aptr),$aptr
adcx %rax,%r13
adcx $zero,%r14 # cf=0
mulx 0*8($nptr),%rax,%r10
adcx %rax,%r15 # discarded
adox %r11,%r10
mulx 1*8($nptr),%rax,%r11
adcx %rax,%r10
adox %r12,%r11
mulx 2*8($nptr),%rax,%r12
mov 24+8(%rsp),$bptr # counter value
mov %r10,-8*4($tptr)
adcx %rax,%r11
adox %r13,%r12
mulx 3*8($nptr),%rax,%r15
mov $bi,%rdx
mov %r11,-8*3($tptr)
adcx %rax,%r12
adox $zero,%r15 # of=0
lea 4*8($nptr),$nptr
mov %r12,-8*2($tptr)
jmp .Lmulx4x_1st
.align 32
.Lmulx4x_1st:
adcx $zero,%r15 # cf=0, modulo-scheduled
mulx 0*8($aptr),%r10,%rax # a[4]*b[0]
adcx %r14,%r10
mulx 1*8($aptr),%r11,%r14 # a[5]*b[0]
adcx %rax,%r11
mulx 2*8($aptr),%r12,%rax # ...
adcx %r14,%r12
mulx 3*8($aptr),%r13,%r14
.byte 0x67,0x67
mov $mi,%rdx
adcx %rax,%r13
adcx $zero,%r14 # cf=0
lea 4*8($aptr),$aptr
lea 4*8($tptr),$tptr
adox %r15,%r10
mulx 0*8($nptr),%rax,%r15
adcx %rax,%r10
adox %r15,%r11
mulx 1*8($nptr),%rax,%r15
adcx %rax,%r11
adox %r15,%r12
mulx 2*8($nptr),%rax,%r15
mov %r10,-5*8($tptr)
adcx %rax,%r12
mov %r11,-4*8($tptr)
adox %r15,%r13
mulx 3*8($nptr),%rax,%r15
mov $bi,%rdx
mov %r12,-3*8($tptr)
adcx %rax,%r13
adox $zero,%r15
lea 4*8($nptr),$nptr
mov %r13,-2*8($tptr)
dec $bptr # of=0, pass cf
jnz .Lmulx4x_1st
mov 8(%rsp),$num # load -num
adc $zero,%r15 # modulo-scheduled
lea ($aptr,$num),$aptr # rewind $aptr
add %r15,%r14
mov 8+8(%rsp),$bptr # re-load &b[i]
adc $zero,$zero # top-most carry
mov %r14,-1*8($tptr)
jmp .Lmulx4x_outer
.align 32
.Lmulx4x_outer:
lea 16-256($tptr),%r10 # where 256-byte mask is (+density control)
pxor %xmm4,%xmm4
.byte 0x67,0x67
pxor %xmm5,%xmm5
___
for($i=0;$i<$STRIDE/16;$i+=4) {
$code.=<<___;
movdqa `16*($i+0)-128`($bptr),%xmm0
movdqa `16*($i+1)-128`($bptr),%xmm1
movdqa `16*($i+2)-128`($bptr),%xmm2
pand `16*($i+0)+256`(%r10),%xmm0
movdqa `16*($i+3)-128`($bptr),%xmm3
pand `16*($i+1)+256`(%r10),%xmm1
por %xmm0,%xmm4
pand `16*($i+2)+256`(%r10),%xmm2
por %xmm1,%xmm5
pand `16*($i+3)+256`(%r10),%xmm3
por %xmm2,%xmm4
por %xmm3,%xmm5
___
}
$code.=<<___;
por %xmm5,%xmm4
pshufd \$0x4e,%xmm4,%xmm0
por %xmm4,%xmm0
lea $STRIDE($bptr),$bptr
movq %xmm0,%rdx # m0=bp[i]
mov $zero,($tptr) # save top-most carry
lea 4*8($tptr,$num),$tptr # rewind $tptr
mulx 0*8($aptr),$mi,%r11 # a[0]*b[i]
xor $zero,$zero # cf=0, of=0
mov %rdx,$bi
mulx 1*8($aptr),%r14,%r12 # a[1]*b[i]
adox -4*8($tptr),$mi # +t[0]
adcx %r14,%r11
mulx 2*8($aptr),%r15,%r13 # ...
adox -3*8($tptr),%r11
adcx %r15,%r12
mulx 3*8($aptr),%rdx,%r14
adox -2*8($tptr),%r12
adcx %rdx,%r13
lea ($nptr,$num),$nptr # rewind $nptr
lea 4*8($aptr),$aptr
adox -1*8($tptr),%r13
adcx $zero,%r14
adox $zero,%r14
mov $mi,%r15
imulq 32+8(%rsp),$mi # "t[0]"*n0
mov $mi,%rdx
xor $zero,$zero # cf=0, of=0
mov $bptr,8+8(%rsp) # off-load &b[i]
mulx 0*8($nptr),%rax,%r10
adcx %rax,%r15 # discarded
adox %r11,%r10
mulx 1*8($nptr),%rax,%r11
adcx %rax,%r10
adox %r12,%r11
mulx 2*8($nptr),%rax,%r12
adcx %rax,%r11
adox %r13,%r12
mulx 3*8($nptr),%rax,%r15
mov $bi,%rdx
mov 24+8(%rsp),$bptr # counter value
mov %r10,-8*4($tptr)
adcx %rax,%r12
mov %r11,-8*3($tptr)
adox $zero,%r15 # of=0
mov %r12,-8*2($tptr)
lea 4*8($nptr),$nptr
jmp .Lmulx4x_inner
.align 32
.Lmulx4x_inner:
mulx 0*8($aptr),%r10,%rax # a[4]*b[i]
adcx $zero,%r15 # cf=0, modulo-scheduled
adox %r14,%r10
mulx 1*8($aptr),%r11,%r14 # a[5]*b[i]
adcx 0*8($tptr),%r10
adox %rax,%r11
mulx 2*8($aptr),%r12,%rax # ...
adcx 1*8($tptr),%r11
adox %r14,%r12
mulx 3*8($aptr),%r13,%r14
mov $mi,%rdx
adcx 2*8($tptr),%r12
adox %rax,%r13
adcx 3*8($tptr),%r13
adox $zero,%r14 # of=0
lea 4*8($aptr),$aptr
lea 4*8($tptr),$tptr
adcx $zero,%r14 # cf=0
adox %r15,%r10
mulx 0*8($nptr),%rax,%r15
adcx %rax,%r10
adox %r15,%r11
mulx 1*8($nptr),%rax,%r15
adcx %rax,%r11
adox %r15,%r12
mulx 2*8($nptr),%rax,%r15
mov %r10,-5*8($tptr)
adcx %rax,%r12
adox %r15,%r13
mov %r11,-4*8($tptr)
mulx 3*8($nptr),%rax,%r15
mov $bi,%rdx
lea 4*8($nptr),$nptr
mov %r12,-3*8($tptr)
adcx %rax,%r13
adox $zero,%r15
mov %r13,-2*8($tptr)
dec $bptr # of=0, pass cf
jnz .Lmulx4x_inner
mov 0+8(%rsp),$num # load -num
adc $zero,%r15 # modulo-scheduled
sub 0*8($tptr),$bptr # pull top-most carry to %cf
mov 8+8(%rsp),$bptr # re-load &b[i]
mov 16+8(%rsp),%r10
adc %r15,%r14
lea ($aptr,$num),$aptr # rewind $aptr
adc $zero,$zero # top-most carry
mov %r14,-1*8($tptr)
cmp %r10,$bptr
jb .Lmulx4x_outer
mov -8($nptr),%r10
mov $zero,%r8
mov ($nptr,$num),%r12
lea ($nptr,$num),%rbp # rewind $nptr
mov $num,%rcx
lea ($tptr,$num),%rdi # rewind $tptr
xor %eax,%eax
xor %r15,%r15
sub %r14,%r10 # compare top-most words
adc %r15,%r15
or %r15,%r8
sar \$3+2,%rcx
sub %r8,%rax # %rax=-%r8
mov 56+8(%rsp),%rdx # restore rp
dec %r12 # so that after 'not' we get -n[0]
mov 8*1(%rbp),%r13
xor %r8,%r8
mov 8*2(%rbp),%r14
mov 8*3(%rbp),%r15
jmp .Lsqrx4x_sub_entry # common post-condition
.cfi_endproc
.size mulx4x_internal,.-mulx4x_internal
___
} {
######################################################################
# void bn_power5(
my $rptr="%rdi"; # BN_ULONG *rptr,
my $aptr="%rsi"; # const BN_ULONG *aptr,
my $bptr="%rdx"; # const void *table,
my $nptr="%rcx"; # const BN_ULONG *nptr,
my $n0 ="%r8"; # const BN_ULONG *n0);
my $num ="%r9"; # int num, has to be divisible by 8
# int pwr);
my ($i,$j,$tptr)=("%rbp","%rcx",$rptr);
my @A0=("%r10","%r11");
my @A1=("%r12","%r13");
my ($a0,$a1,$ai)=("%r14","%r15","%rbx");
$code.=<<___;
.type bn_powerx5,\@function,6
.align 32
bn_powerx5:
.cfi_startproc
mov %rsp,%rax
.cfi_def_cfa_register %rax
.Lpowerx5_enter:
push %rbx
.cfi_push %rbx
push %rbp
.cfi_push %rbp
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lpowerx5_prologue:
shl \$3,${num}d # convert $num to bytes
lea ($num,$num,2),%r10 # 3*$num in bytes
neg $num
mov ($n0),$n0 # *n0
##############################################################
# Ensure that stack frame doesn't alias with $rptr+3*$num
# modulo 4096, which covers ret[num], am[num] and n[num]
# (see bn_exp.c). This is done to allow memory disambiguation
# logic do its magic. [Extra 256 bytes is for power mask
# calculated from 7th argument, the index.]
#
lea -320(%rsp,$num,2),%r11
mov %rsp,%rbp
sub $rptr,%r11
and \$4095,%r11
cmp %r11,%r10
jb .Lpwrx_sp_alt
sub %r11,%rbp # align with $aptr
lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256)
jmp .Lpwrx_sp_done
.align 32
.Lpwrx_sp_alt:
lea 4096-320(,$num,2),%r10
lea -320(%rbp,$num,2),%rbp # alloca(frame+2*$num*8+256)
sub %r10,%r11
mov \$0,%r10
cmovc %r10,%r11
sub %r11,%rbp
.Lpwrx_sp_done:
and \$-64,%rbp
mov %rsp,%r11
sub %rbp,%r11
and \$-4096,%r11
lea (%rbp,%r11),%rsp
mov (%rsp),%r10
cmp %rbp,%rsp
ja .Lpwrx_page_walk
jmp .Lpwrx_page_walk_done
.Lpwrx_page_walk:
lea -4096(%rsp),%rsp
mov (%rsp),%r10
cmp %rbp,%rsp
ja .Lpwrx_page_walk
.Lpwrx_page_walk_done:
mov $num,%r10
neg $num
##############################################################
# Stack layout
#
# +0 saved $num, used in reduction section
# +8 &t[2*$num], used in reduction section
# +16 intermediate carry bit
# +24 top-most carry bit, used in reduction section
# +32 saved *n0
# +40 saved %rsp
# +48 t[2*$num]
#
pxor %xmm0,%xmm0
movq $rptr,%xmm1 # save $rptr
movq $nptr,%xmm2 # save $nptr
movq %r10, %xmm3 # -$num
movq $bptr,%xmm4
mov $n0, 32(%rsp)
mov %rax, 40(%rsp) # save original %rsp
.cfi_cfa_expression %rsp+40,deref,+8
.Lpowerx5_body:
call __bn_sqrx8x_internal
call __bn_postx4x_internal
call __bn_sqrx8x_internal
call __bn_postx4x_internal
call __bn_sqrx8x_internal
call __bn_postx4x_internal
call __bn_sqrx8x_internal
call __bn_postx4x_internal
call __bn_sqrx8x_internal
call __bn_postx4x_internal
mov %r10,$num # -num
mov $aptr,$rptr
movq %xmm2,$nptr
movq %xmm4,$bptr
mov 40(%rsp),%rax
call mulx4x_internal
mov 40(%rsp),%rsi # restore %rsp
.cfi_def_cfa %rsi,8
mov \$1,%rax
mov -48(%rsi),%r15
.cfi_restore %r15
mov -40(%rsi),%r14
.cfi_restore %r14
mov -32(%rsi),%r13
.cfi_restore %r13
mov -24(%rsi),%r12
.cfi_restore %r12
mov -16(%rsi),%rbp
.cfi_restore %rbp
mov -8(%rsi),%rbx
.cfi_restore %rbx
lea (%rsi),%rsp
.cfi_def_cfa_register %rsp
.Lpowerx5_epilogue:
ret
.cfi_endproc
.size bn_powerx5,.-bn_powerx5
.globl bn_sqrx8x_internal
.hidden bn_sqrx8x_internal
.type bn_sqrx8x_internal,\@abi-omnipotent
.align 32
bn_sqrx8x_internal:
__bn_sqrx8x_internal:
.cfi_startproc
##################################################################
# Squaring part:
#
# a) multiply-n-add everything but a[i]*a[i];
# b) shift result of a) by 1 to the left and accumulate
# a[i]*a[i] products;
#
##################################################################
# a[7]a[7]a[6]a[6]a[5]a[5]a[4]a[4]a[3]a[3]a[2]a[2]a[1]a[1]a[0]a[0]
# a[1]a[0]
# a[2]a[0]
# a[3]a[0]
# a[2]a[1]
# a[3]a[1]
# a[3]a[2]
#
# a[4]a[0]
# a[5]a[0]
# a[6]a[0]
# a[7]a[0]
# a[4]a[1]
# a[5]a[1]
# a[6]a[1]
# a[7]a[1]
# a[4]a[2]
# a[5]a[2]
# a[6]a[2]
# a[7]a[2]
# a[4]a[3]
# a[5]a[3]
# a[6]a[3]
# a[7]a[3]
#
# a[5]a[4]
# a[6]a[4]
# a[7]a[4]
# a[6]a[5]
# a[7]a[5]
# a[7]a[6]
# a[7]a[7]a[6]a[6]a[5]a[5]a[4]a[4]a[3]a[3]a[2]a[2]a[1]a[1]a[0]a[0]
___
{
my ($zero,$carry)=("%rbp","%rcx");
my $aaptr=$zero;
$code.=<<___;
lea 48+8(%rsp),$tptr
lea ($aptr,$num),$aaptr
mov $num,0+8(%rsp) # save $num
mov $aaptr,8+8(%rsp) # save end of $aptr
jmp .Lsqr8x_zero_start
.align 32
.byte 0x66,0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00
.Lsqrx8x_zero:
.byte 0x3e
movdqa %xmm0,0*8($tptr)
movdqa %xmm0,2*8($tptr)
movdqa %xmm0,4*8($tptr)
movdqa %xmm0,6*8($tptr)
.Lsqr8x_zero_start: # aligned at 32
movdqa %xmm0,8*8($tptr)
movdqa %xmm0,10*8($tptr)
movdqa %xmm0,12*8($tptr)
movdqa %xmm0,14*8($tptr)
lea 16*8($tptr),$tptr
sub \$64,$num
jnz .Lsqrx8x_zero
mov 0*8($aptr),%rdx # a[0], modulo-scheduled
#xor %r9,%r9 # t[1], ex-$num, zero already
xor %r10,%r10
xor %r11,%r11
xor %r12,%r12
xor %r13,%r13
xor %r14,%r14
xor %r15,%r15
lea 48+8(%rsp),$tptr
xor $zero,$zero # cf=0, cf=0
jmp .Lsqrx8x_outer_loop
.align 32
.Lsqrx8x_outer_loop:
mulx 1*8($aptr),%r8,%rax # a[1]*a[0]
adcx %r9,%r8 # a[1]*a[0]+=t[1]
adox %rax,%r10
mulx 2*8($aptr),%r9,%rax # a[2]*a[0]
adcx %r10,%r9
adox %rax,%r11
.byte 0xc4,0xe2,0xab,0xf6,0x86,0x18,0x00,0x00,0x00 # mulx 3*8($aptr),%r10,%rax # ...
adcx %r11,%r10
adox %rax,%r12
.byte 0xc4,0xe2,0xa3,0xf6,0x86,0x20,0x00,0x00,0x00 # mulx 4*8($aptr),%r11,%rax
adcx %r12,%r11
adox %rax,%r13
mulx 5*8($aptr),%r12,%rax
adcx %r13,%r12
adox %rax,%r14
mulx 6*8($aptr),%r13,%rax
adcx %r14,%r13
adox %r15,%rax
mulx 7*8($aptr),%r14,%r15
mov 1*8($aptr),%rdx # a[1]
adcx %rax,%r14
adox $zero,%r15
adc 8*8($tptr),%r15
mov %r8,1*8($tptr) # t[1]
mov %r9,2*8($tptr) # t[2]
sbb $carry,$carry # mov %cf,$carry
xor $zero,$zero # cf=0, of=0
mulx 2*8($aptr),%r8,%rbx # a[2]*a[1]
mulx 3*8($aptr),%r9,%rax # a[3]*a[1]
adcx %r10,%r8
adox %rbx,%r9
mulx 4*8($aptr),%r10,%rbx # ...
adcx %r11,%r9
adox %rax,%r10
.byte 0xc4,0xe2,0xa3,0xf6,0x86,0x28,0x00,0x00,0x00 # mulx 5*8($aptr),%r11,%rax
adcx %r12,%r10
adox %rbx,%r11
.byte 0xc4,0xe2,0x9b,0xf6,0x9e,0x30,0x00,0x00,0x00 # mulx 6*8($aptr),%r12,%rbx
adcx %r13,%r11
adox %r14,%r12
.byte 0xc4,0x62,0x93,0xf6,0xb6,0x38,0x00,0x00,0x00 # mulx 7*8($aptr),%r13,%r14
mov 2*8($aptr),%rdx # a[2]
adcx %rax,%r12
adox %rbx,%r13
adcx %r15,%r13
adox $zero,%r14 # of=0
adcx $zero,%r14 # cf=0
mov %r8,3*8($tptr) # t[3]
mov %r9,4*8($tptr) # t[4]
mulx 3*8($aptr),%r8,%rbx # a[3]*a[2]
mulx 4*8($aptr),%r9,%rax # a[4]*a[2]
adcx %r10,%r8
adox %rbx,%r9
mulx 5*8($aptr),%r10,%rbx # ...
adcx %r11,%r9
adox %rax,%r10
.byte 0xc4,0xe2,0xa3,0xf6,0x86,0x30,0x00,0x00,0x00 # mulx 6*8($aptr),%r11,%rax
adcx %r12,%r10
adox %r13,%r11
.byte 0xc4,0x62,0x9b,0xf6,0xae,0x38,0x00,0x00,0x00 # mulx 7*8($aptr),%r12,%r13
.byte 0x3e
mov 3*8($aptr),%rdx # a[3]
adcx %rbx,%r11
adox %rax,%r12
adcx %r14,%r12
mov %r8,5*8($tptr) # t[5]
mov %r9,6*8($tptr) # t[6]
mulx 4*8($aptr),%r8,%rax # a[4]*a[3]
adox $zero,%r13 # of=0
adcx $zero,%r13 # cf=0
mulx 5*8($aptr),%r9,%rbx # a[5]*a[3]
adcx %r10,%r8
adox %rax,%r9
mulx 6*8($aptr),%r10,%rax # ...
adcx %r11,%r9
adox %r12,%r10
mulx 7*8($aptr),%r11,%r12
mov 4*8($aptr),%rdx # a[4]
mov 5*8($aptr),%r14 # a[5]
adcx %rbx,%r10
adox %rax,%r11
mov 6*8($aptr),%r15 # a[6]
adcx %r13,%r11
adox $zero,%r12 # of=0
adcx $zero,%r12 # cf=0
mov %r8,7*8($tptr) # t[7]
mov %r9,8*8($tptr) # t[8]
mulx %r14,%r9,%rax # a[5]*a[4]
mov 7*8($aptr),%r8 # a[7]
adcx %r10,%r9
mulx %r15,%r10,%rbx # a[6]*a[4]
adox %rax,%r10
adcx %r11,%r10
mulx %r8,%r11,%rax # a[7]*a[4]
mov %r14,%rdx # a[5]
adox %rbx,%r11
adcx %r12,%r11
#adox $zero,%rax # of=0
adcx $zero,%rax # cf=0
mulx %r15,%r14,%rbx # a[6]*a[5]
mulx %r8,%r12,%r13 # a[7]*a[5]
mov %r15,%rdx # a[6]
lea 8*8($aptr),$aptr
adcx %r14,%r11
adox %rbx,%r12
adcx %rax,%r12
adox $zero,%r13
.byte 0x67,0x67
mulx %r8,%r8,%r14 # a[7]*a[6]
adcx %r8,%r13
adcx $zero,%r14
cmp 8+8(%rsp),$aptr
je .Lsqrx8x_outer_break
neg $carry # mov $carry,%cf
mov \$-8,%rcx
mov $zero,%r15
mov 8*8($tptr),%r8
adcx 9*8($tptr),%r9 # +=t[9]
adcx 10*8($tptr),%r10 # ...
adcx 11*8($tptr),%r11
adc 12*8($tptr),%r12
adc 13*8($tptr),%r13
adc 14*8($tptr),%r14
adc 15*8($tptr),%r15
lea ($aptr),$aaptr
lea 2*64($tptr),$tptr
sbb %rax,%rax # mov %cf,$carry
mov -64($aptr),%rdx # a[0]
mov %rax,16+8(%rsp) # offload $carry
mov $tptr,24+8(%rsp)
#lea 8*8($tptr),$tptr # see 2*8*8($tptr) above
xor %eax,%eax # cf=0, of=0
jmp .Lsqrx8x_loop
.align 32
.Lsqrx8x_loop:
mov %r8,%rbx
mulx 0*8($aaptr),%rax,%r8 # a[8]*a[i]
adcx %rax,%rbx # +=t[8]
adox %r9,%r8
mulx 1*8($aaptr),%rax,%r9 # ...
adcx %rax,%r8
adox %r10,%r9
mulx 2*8($aaptr),%rax,%r10
adcx %rax,%r9
adox %r11,%r10
mulx 3*8($aaptr),%rax,%r11
adcx %rax,%r10
adox %r12,%r11
.byte 0xc4,0x62,0xfb,0xf6,0xa5,0x20,0x00,0x00,0x00 # mulx 4*8($aaptr),%rax,%r12
adcx %rax,%r11
adox %r13,%r12
mulx 5*8($aaptr),%rax,%r13
adcx %rax,%r12
adox %r14,%r13
mulx 6*8($aaptr),%rax,%r14
mov %rbx,($tptr,%rcx,8) # store t[8+i]
mov \$0,%ebx
adcx %rax,%r13
adox %r15,%r14
.byte 0xc4,0x62,0xfb,0xf6,0xbd,0x38,0x00,0x00,0x00 # mulx 7*8($aaptr),%rax,%r15
mov 8($aptr,%rcx,8),%rdx # a[i]
adcx %rax,%r14
adox %rbx,%r15 # %rbx is 0, of=0
adcx %rbx,%r15 # cf=0
.byte 0x67
inc %rcx # of=0
jnz .Lsqrx8x_loop
lea 8*8($aaptr),$aaptr
mov \$-8,%rcx
cmp 8+8(%rsp),$aaptr # done?
je .Lsqrx8x_break
sub 16+8(%rsp),%rbx # mov 16(%rsp),%cf
.byte 0x66
mov -64($aptr),%rdx
adcx 0*8($tptr),%r8
adcx 1*8($tptr),%r9
adc 2*8($tptr),%r10
adc 3*8($tptr),%r11
adc 4*8($tptr),%r12
adc 5*8($tptr),%r13
adc 6*8($tptr),%r14
adc 7*8($tptr),%r15
lea 8*8($tptr),$tptr
.byte 0x67
sbb %rax,%rax # mov %cf,%rax
xor %ebx,%ebx # cf=0, of=0
mov %rax,16+8(%rsp) # offload carry
jmp .Lsqrx8x_loop
.align 32
.Lsqrx8x_break:
xor $zero,$zero
sub 16+8(%rsp),%rbx # mov 16(%rsp),%cf
adcx $zero,%r8
mov 24+8(%rsp),$carry # initial $tptr, borrow $carry
adcx $zero,%r9
mov 0*8($aptr),%rdx # a[8], modulo-scheduled
adc \$0,%r10
mov %r8,0*8($tptr)
adc \$0,%r11
adc \$0,%r12
adc \$0,%r13
adc \$0,%r14
adc \$0,%r15
cmp $carry,$tptr # cf=0, of=0
je .Lsqrx8x_outer_loop
mov %r9,1*8($tptr)
mov 1*8($carry),%r9
mov %r10,2*8($tptr)
mov 2*8($carry),%r10
mov %r11,3*8($tptr)
mov 3*8($carry),%r11
mov %r12,4*8($tptr)
mov 4*8($carry),%r12
mov %r13,5*8($tptr)
mov 5*8($carry),%r13
mov %r14,6*8($tptr)
mov 6*8($carry),%r14
mov %r15,7*8($tptr)
mov 7*8($carry),%r15
mov $carry,$tptr
jmp .Lsqrx8x_outer_loop
.align 32
.Lsqrx8x_outer_break:
mov %r9,9*8($tptr) # t[9]
movq %xmm3,%rcx # -$num
mov %r10,10*8($tptr) # ...
mov %r11,11*8($tptr)
mov %r12,12*8($tptr)
mov %r13,13*8($tptr)
mov %r14,14*8($tptr)
___
} {
my $i="%rcx";
$code.=<<___;
lea 48+8(%rsp),$tptr
mov ($aptr,$i),%rdx # a[0]
mov 8($tptr),$A0[1] # t[1]
xor $A0[0],$A0[0] # t[0], of=0, cf=0
mov 0+8(%rsp),$num # restore $num
adox $A0[1],$A0[1]
mov 16($tptr),$A1[0] # t[2] # prefetch
mov 24($tptr),$A1[1] # t[3] # prefetch
#jmp .Lsqrx4x_shift_n_add # happens to be aligned
.align 32
.Lsqrx4x_shift_n_add:
mulx %rdx,%rax,%rbx
adox $A1[0],$A1[0]
adcx $A0[0],%rax
.byte 0x48,0x8b,0x94,0x0e,0x08,0x00,0x00,0x00 # mov 8($aptr,$i),%rdx # a[i+1] # prefetch
.byte 0x4c,0x8b,0x97,0x20,0x00,0x00,0x00 # mov 32($tptr),$A0[0] # t[2*i+4] # prefetch
adox $A1[1],$A1[1]
adcx $A0[1],%rbx
mov 40($tptr),$A0[1] # t[2*i+4+1] # prefetch
mov %rax,0($tptr)
mov %rbx,8($tptr)
mulx %rdx,%rax,%rbx
adox $A0[0],$A0[0]
adcx $A1[0],%rax
mov 16($aptr,$i),%rdx # a[i+2] # prefetch
mov 48($tptr),$A1[0] # t[2*i+6] # prefetch
adox $A0[1],$A0[1]
adcx $A1[1],%rbx
mov 56($tptr),$A1[1] # t[2*i+6+1] # prefetch
mov %rax,16($tptr)
mov %rbx,24($tptr)
mulx %rdx,%rax,%rbx
adox $A1[0],$A1[0]
adcx $A0[0],%rax
mov 24($aptr,$i),%rdx # a[i+3] # prefetch
lea 32($i),$i
mov 64($tptr),$A0[0] # t[2*i+8] # prefetch
adox $A1[1],$A1[1]
adcx $A0[1],%rbx
mov 72($tptr),$A0[1] # t[2*i+8+1] # prefetch
mov %rax,32($tptr)
mov %rbx,40($tptr)
mulx %rdx,%rax,%rbx
adox $A0[0],$A0[0]
adcx $A1[0],%rax
jrcxz .Lsqrx4x_shift_n_add_break
.byte 0x48,0x8b,0x94,0x0e,0x00,0x00,0x00,0x00 # mov 0($aptr,$i),%rdx # a[i+4] # prefetch
adox $A0[1],$A0[1]
adcx $A1[1],%rbx
mov 80($tptr),$A1[0] # t[2*i+10] # prefetch
mov 88($tptr),$A1[1] # t[2*i+10+1] # prefetch
mov %rax,48($tptr)
mov %rbx,56($tptr)
lea 64($tptr),$tptr
nop
jmp .Lsqrx4x_shift_n_add
.align 32
.Lsqrx4x_shift_n_add_break:
adcx $A1[1],%rbx
mov %rax,48($tptr)
mov %rbx,56($tptr)
lea 64($tptr),$tptr # end of t[] buffer
___
}
######################################################################
# Montgomery reduction part, "word-by-word" algorithm.
#
# This new path is inspired by multiple submissions from Intel, by
# Shay Gueron, Vlad Krasnov, Erdinc Ozturk, James Guilford,
# Vinodh Gopal...
{
my ($nptr,$carry,$m0)=("%rbp","%rsi","%rdx");
$code.=<<___;
movq %xmm2,$nptr
__bn_sqrx8x_reduction:
xor %eax,%eax # initial top-most carry bit
mov 32+8(%rsp),%rbx # n0
mov 48+8(%rsp),%rdx # "%r8", 8*0($tptr)
lea -8*8($nptr,$num),%rcx # end of n[]
#lea 48+8(%rsp,$num,2),$tptr # end of t[] buffer
mov %rcx, 0+8(%rsp) # save end of n[]
mov $tptr,8+8(%rsp) # save end of t[]
lea 48+8(%rsp),$tptr # initial t[] window
jmp .Lsqrx8x_reduction_loop
.align 32
.Lsqrx8x_reduction_loop:
mov 8*1($tptr),%r9
mov 8*2($tptr),%r10
mov 8*3($tptr),%r11
mov 8*4($tptr),%r12
mov %rdx,%r8
imulq %rbx,%rdx # n0*a[i]
mov 8*5($tptr),%r13
mov 8*6($tptr),%r14
mov 8*7($tptr),%r15
mov %rax,24+8(%rsp) # store top-most carry bit
lea 8*8($tptr),$tptr
xor $carry,$carry # cf=0,of=0
mov \$-8,%rcx
jmp .Lsqrx8x_reduce
.align 32
.Lsqrx8x_reduce:
mov %r8, %rbx
mulx 8*0($nptr),%rax,%r8 # n[0]
adcx %rbx,%rax # discarded
adox %r9,%r8
mulx 8*1($nptr),%rbx,%r9 # n[1]
adcx %rbx,%r8
adox %r10,%r9
mulx 8*2($nptr),%rbx,%r10
adcx %rbx,%r9
adox %r11,%r10
mulx 8*3($nptr),%rbx,%r11
adcx %rbx,%r10
adox %r12,%r11
.byte 0xc4,0x62,0xe3,0xf6,0xa5,0x20,0x00,0x00,0x00 # mulx 8*4($nptr),%rbx,%r12
mov %rdx,%rax
mov %r8,%rdx
adcx %rbx,%r11
adox %r13,%r12
mulx 32+8(%rsp),%rbx,%rdx # %rdx discarded
mov %rax,%rdx
mov %rax,64+48+8(%rsp,%rcx,8) # put aside n0*a[i]
mulx 8*5($nptr),%rax,%r13
adcx %rax,%r12
adox %r14,%r13
mulx 8*6($nptr),%rax,%r14
adcx %rax,%r13
adox %r15,%r14
mulx 8*7($nptr),%rax,%r15
mov %rbx,%rdx
adcx %rax,%r14
adox $carry,%r15 # $carry is 0
adcx $carry,%r15 # cf=0
.byte 0x67,0x67,0x67
inc %rcx # of=0
jnz .Lsqrx8x_reduce
mov $carry,%rax # xor %rax,%rax
cmp 0+8(%rsp),$nptr # end of n[]?
jae .Lsqrx8x_no_tail
mov 48+8(%rsp),%rdx # pull n0*a[0]
add 8*0($tptr),%r8
lea 8*8($nptr),$nptr
mov \$-8,%rcx
adcx 8*1($tptr),%r9
adcx 8*2($tptr),%r10
adc 8*3($tptr),%r11
adc 8*4($tptr),%r12
adc 8*5($tptr),%r13
adc 8*6($tptr),%r14
adc 8*7($tptr),%r15
lea 8*8($tptr),$tptr
sbb %rax,%rax # top carry
xor $carry,$carry # of=0, cf=0
mov %rax,16+8(%rsp)
jmp .Lsqrx8x_tail
.align 32
.Lsqrx8x_tail:
mov %r8,%rbx
mulx 8*0($nptr),%rax,%r8
adcx %rax,%rbx
adox %r9,%r8
mulx 8*1($nptr),%rax,%r9
adcx %rax,%r8
adox %r10,%r9
mulx 8*2($nptr),%rax,%r10
adcx %rax,%r9
adox %r11,%r10
mulx 8*3($nptr),%rax,%r11
adcx %rax,%r10
adox %r12,%r11
.byte 0xc4,0x62,0xfb,0xf6,0xa5,0x20,0x00,0x00,0x00 # mulx 8*4($nptr),%rax,%r12
adcx %rax,%r11
adox %r13,%r12
mulx 8*5($nptr),%rax,%r13
adcx %rax,%r12
adox %r14,%r13
mulx 8*6($nptr),%rax,%r14
adcx %rax,%r13
adox %r15,%r14
mulx 8*7($nptr),%rax,%r15
mov 72+48+8(%rsp,%rcx,8),%rdx # pull n0*a[i]
adcx %rax,%r14
adox $carry,%r15
mov %rbx,($tptr,%rcx,8) # save result
mov %r8,%rbx
adcx $carry,%r15 # cf=0
inc %rcx # of=0
jnz .Lsqrx8x_tail
cmp 0+8(%rsp),$nptr # end of n[]?
jae .Lsqrx8x_tail_done # break out of loop
sub 16+8(%rsp),$carry # mov 16(%rsp),%cf
mov 48+8(%rsp),%rdx # pull n0*a[0]
lea 8*8($nptr),$nptr
adc 8*0($tptr),%r8
adc 8*1($tptr),%r9
adc 8*2($tptr),%r10
adc 8*3($tptr),%r11
adc 8*4($tptr),%r12
adc 8*5($tptr),%r13
adc 8*6($tptr),%r14
adc 8*7($tptr),%r15
lea 8*8($tptr),$tptr
sbb %rax,%rax
sub \$8,%rcx # mov \$-8,%rcx
xor $carry,$carry # of=0, cf=0
mov %rax,16+8(%rsp)
jmp .Lsqrx8x_tail
.align 32
.Lsqrx8x_tail_done:
xor %rax,%rax
add 24+8(%rsp),%r8 # can this overflow?
adc \$0,%r9
adc \$0,%r10
adc \$0,%r11
adc \$0,%r12
adc \$0,%r13
adc \$0,%r14
adc \$0,%r15
adc \$0,%rax
sub 16+8(%rsp),$carry # mov 16(%rsp),%cf
.Lsqrx8x_no_tail: # %cf is 0 if jumped here
adc 8*0($tptr),%r8
movq %xmm3,%rcx
adc 8*1($tptr),%r9
mov 8*7($nptr),$carry
movq %xmm2,$nptr # restore $nptr
adc 8*2($tptr),%r10
adc 8*3($tptr),%r11
adc 8*4($tptr),%r12
adc 8*5($tptr),%r13
adc 8*6($tptr),%r14
adc 8*7($tptr),%r15
adc \$0,%rax # top-most carry
mov 32+8(%rsp),%rbx # n0
mov 8*8($tptr,%rcx),%rdx # modulo-scheduled "%r8"
mov %r8,8*0($tptr) # store top 512 bits
lea 8*8($tptr),%r8 # borrow %r8
mov %r9,8*1($tptr)
mov %r10,8*2($tptr)
mov %r11,8*3($tptr)
mov %r12,8*4($tptr)
mov %r13,8*5($tptr)
mov %r14,8*6($tptr)
mov %r15,8*7($tptr)
lea 8*8($tptr,%rcx),$tptr # start of current t[] window
cmp 8+8(%rsp),%r8 # end of t[]?
jb .Lsqrx8x_reduction_loop
ret
.cfi_endproc
.size bn_sqrx8x_internal,.-bn_sqrx8x_internal
___
}
##############################################################
# Post-condition, 4x unrolled
#
{
my ($rptr,$nptr)=("%rdx","%rbp");
$code.=<<___;
.align 32
__bn_postx4x_internal:
.cfi_startproc
mov 8*0($nptr),%r12
mov %rcx,%r10 # -$num
mov %rcx,%r9 # -$num
neg %rax
sar \$3+2,%rcx
#lea 48+8(%rsp,%r9),$tptr
movq %xmm1,$rptr # restore $rptr
movq %xmm1,$aptr # prepare for back-to-back call
dec %r12 # so that after 'not' we get -n[0]
mov 8*1($nptr),%r13
xor %r8,%r8
mov 8*2($nptr),%r14
mov 8*3($nptr),%r15
jmp .Lsqrx4x_sub_entry
.align 16
.Lsqrx4x_sub:
mov 8*0($nptr),%r12
mov 8*1($nptr),%r13
mov 8*2($nptr),%r14
mov 8*3($nptr),%r15
.Lsqrx4x_sub_entry:
andn %rax,%r12,%r12
lea 8*4($nptr),$nptr
andn %rax,%r13,%r13
andn %rax,%r14,%r14
andn %rax,%r15,%r15
neg %r8 # mov %r8,%cf
adc 8*0($tptr),%r12
adc 8*1($tptr),%r13
adc 8*2($tptr),%r14
adc 8*3($tptr),%r15
mov %r12,8*0($rptr)
lea 8*4($tptr),$tptr
mov %r13,8*1($rptr)
sbb %r8,%r8 # mov %cf,%r8
mov %r14,8*2($rptr)
mov %r15,8*3($rptr)
lea 8*4($rptr),$rptr
inc %rcx
jnz .Lsqrx4x_sub
neg %r9 # restore $num
ret
.cfi_endproc
.size __bn_postx4x_internal,.-__bn_postx4x_internal
___
}
}}}
{
my ($inp,$num,$tbl,$idx)=$win64?("%rcx","%edx","%r8", "%r9d") : # Win64 order
("%rdi","%esi","%rdx","%ecx"); # Unix order
my $out=$inp;
my $STRIDE=2**5*8;
my $N=$STRIDE/4;
$code.=<<___;
.globl bn_get_bits5
.type bn_get_bits5,\@abi-omnipotent
.align 16
bn_get_bits5:
.cfi_startproc
lea 0($inp),%r10
lea 1($inp),%r11
mov $num,%ecx
shr \$4,$num
and \$15,%ecx
lea -8(%ecx),%eax
cmp \$11,%ecx
cmova %r11,%r10
cmova %eax,%ecx
movzw (%r10,$num,2),%eax
shrl %cl,%eax
and \$31,%eax
ret
.cfi_endproc
.size bn_get_bits5,.-bn_get_bits5
.globl bn_scatter5
.type bn_scatter5,\@abi-omnipotent
.align 16
bn_scatter5:
.cfi_startproc
cmp \$0, $num
jz .Lscatter_epilogue
lea ($tbl,$idx,8),$tbl
.Lscatter:
mov ($inp),%rax
lea 8($inp),$inp
mov %rax,($tbl)
lea 32*8($tbl),$tbl
sub \$1,$num
jnz .Lscatter
.Lscatter_epilogue:
ret
.cfi_endproc
.size bn_scatter5,.-bn_scatter5
.globl bn_gather5
.type bn_gather5,\@abi-omnipotent
.align 32
bn_gather5:
.LSEH_begin_bn_gather5: # Win64 thing, but harmless in other cases
.cfi_startproc
# I can't trust assembler to use specific encoding:-(
.byte 0x4c,0x8d,0x14,0x24 #lea (%rsp),%r10
.byte 0x48,0x81,0xec,0x08,0x01,0x00,0x00 #sub $0x108,%rsp
lea .Linc(%rip),%rax
and \$-16,%rsp # shouldn't be formally required
movd $idx,%xmm5
movdqa 0(%rax),%xmm0 # 00000001000000010000000000000000
movdqa 16(%rax),%xmm1 # 00000002000000020000000200000002
lea 128($tbl),%r11 # size optimization
lea 128(%rsp),%rax # size optimization
pshufd \$0,%xmm5,%xmm5 # broadcast $idx
movdqa %xmm1,%xmm4
movdqa %xmm1,%xmm2
___
########################################################################
# calculate mask by comparing 0..31 to $idx and save result to stack
#
for($i=0;$i<$STRIDE/16;$i+=4) {
$code.=<<___;
paddd %xmm0,%xmm1
pcmpeqd %xmm5,%xmm0 # compare to 1,0
___
$code.=<<___ if ($i);
movdqa %xmm3,`16*($i-1)-128`(%rax)
___
$code.=<<___;
movdqa %xmm4,%xmm3
paddd %xmm1,%xmm2
pcmpeqd %xmm5,%xmm1 # compare to 3,2
movdqa %xmm0,`16*($i+0)-128`(%rax)
movdqa %xmm4,%xmm0
paddd %xmm2,%xmm3
pcmpeqd %xmm5,%xmm2 # compare to 5,4
movdqa %xmm1,`16*($i+1)-128`(%rax)
movdqa %xmm4,%xmm1
paddd %xmm3,%xmm0
pcmpeqd %xmm5,%xmm3 # compare to 7,6
movdqa %xmm2,`16*($i+2)-128`(%rax)
movdqa %xmm4,%xmm2
___
}
$code.=<<___;
movdqa %xmm3,`16*($i-1)-128`(%rax)
jmp .Lgather
.align 32
.Lgather:
pxor %xmm4,%xmm4
pxor %xmm5,%xmm5
___
for($i=0;$i<$STRIDE/16;$i+=4) {
$code.=<<___;
movdqa `16*($i+0)-128`(%r11),%xmm0
movdqa `16*($i+1)-128`(%r11),%xmm1
movdqa `16*($i+2)-128`(%r11),%xmm2
pand `16*($i+0)-128`(%rax),%xmm0
movdqa `16*($i+3)-128`(%r11),%xmm3
pand `16*($i+1)-128`(%rax),%xmm1
por %xmm0,%xmm4
pand `16*($i+2)-128`(%rax),%xmm2
por %xmm1,%xmm5
pand `16*($i+3)-128`(%rax),%xmm3
por %xmm2,%xmm4
por %xmm3,%xmm5
___
}
$code.=<<___;
por %xmm5,%xmm4
lea $STRIDE(%r11),%r11
pshufd \$0x4e,%xmm4,%xmm0
por %xmm4,%xmm0
movq %xmm0,($out) # m0=bp[0]
lea 8($out),$out
sub \$1,$num
jnz .Lgather
lea (%r10),%rsp
ret
.LSEH_end_bn_gather5:
.cfi_endproc
.size bn_gather5,.-bn_gather5
___
}
$code.=<<___;
.align 64
.Linc:
.long 0,0, 1,1
.long 2,2, 2,2
.asciz "Montgomery Multiplication with scatter/gather for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
___
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___;
.extern __imp_RtlVirtualUnwind
.type mul_handler,\@abi-omnipotent
.align 16
mul_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HandlerData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # end of prologue label
cmp %r10,%rbx # context->Rip<end of prologue label
jb .Lcommon_seh_tail
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # beginning of body label
cmp %r10,%rbx # context->Rip<body label
jb .Lcommon_pop_regs
mov 152($context),%rax # pull context->Rsp
mov 8(%r11),%r10d # HandlerData[2]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lcommon_seh_tail
lea .Lmul_epilogue(%rip),%r10
cmp %r10,%rbx
ja .Lbody_40
mov 192($context),%r10 # pull $num
mov 8(%rax,%r10,8),%rax # pull saved stack pointer
jmp .Lcommon_pop_regs
.Lbody_40:
mov 40(%rax),%rax # pull saved stack pointer
.Lcommon_pop_regs:
mov -8(%rax),%rbx
mov -16(%rax),%rbp
mov -24(%rax),%r12
mov -32(%rax),%r13
mov -40(%rax),%r14
mov -48(%rax),%r15
mov %rbx,144($context) # restore context->Rbx
mov %rbp,160($context) # restore context->Rbp
mov %r12,216($context) # restore context->R12
mov %r13,224($context) # restore context->R13
mov %r14,232($context) # restore context->R14
mov %r15,240($context) # restore context->R15
.Lcommon_seh_tail:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$154,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size mul_handler,.-mul_handler
.section .pdata
.align 4
.rva .LSEH_begin_bn_mul_mont_gather5
.rva .LSEH_end_bn_mul_mont_gather5
.rva .LSEH_info_bn_mul_mont_gather5
.rva .LSEH_begin_bn_mul4x_mont_gather5
.rva .LSEH_end_bn_mul4x_mont_gather5
.rva .LSEH_info_bn_mul4x_mont_gather5
.rva .LSEH_begin_bn_power5
.rva .LSEH_end_bn_power5
.rva .LSEH_info_bn_power5
___
$code.=<<___ if ($addx);
.rva .LSEH_begin_bn_mulx4x_mont_gather5
.rva .LSEH_end_bn_mulx4x_mont_gather5
.rva .LSEH_info_bn_mulx4x_mont_gather5
.rva .LSEH_begin_bn_powerx5
.rva .LSEH_end_bn_powerx5
.rva .LSEH_info_bn_powerx5
___
$code.=<<___;
.rva .LSEH_begin_bn_gather5
.rva .LSEH_end_bn_gather5
.rva .LSEH_info_bn_gather5
.section .xdata
.align 8
.LSEH_info_bn_mul_mont_gather5:
.byte 9,0,0,0
.rva mul_handler
.rva .Lmul_body,.Lmul_body,.Lmul_epilogue # HandlerData[]
.align 8
.LSEH_info_bn_mul4x_mont_gather5:
.byte 9,0,0,0
.rva mul_handler
.rva .Lmul4x_prologue,.Lmul4x_body,.Lmul4x_epilogue # HandlerData[]
.align 8
.LSEH_info_bn_power5:
.byte 9,0,0,0
.rva mul_handler
.rva .Lpower5_prologue,.Lpower5_body,.Lpower5_epilogue # HandlerData[]
___
$code.=<<___ if ($addx);
.align 8
.LSEH_info_bn_mulx4x_mont_gather5:
.byte 9,0,0,0
.rva mul_handler
.rva .Lmulx4x_prologue,.Lmulx4x_body,.Lmulx4x_epilogue # HandlerData[]
.align 8
.LSEH_info_bn_powerx5:
.byte 9,0,0,0
.rva mul_handler
.rva .Lpowerx5_prologue,.Lpowerx5_body,.Lpowerx5_epilogue # HandlerData[]
___
$code.=<<___;
.align 8
.LSEH_info_bn_gather5:
.byte 0x01,0x0b,0x03,0x0a
.byte 0x0b,0x01,0x21,0x00 # sub rsp,0x108
.byte 0x04,0xa3,0x00,0x00 # lea r10,(rsp)
.align 8
___
}
$code =~ s/\`([^\`]*)\`/eval($1)/gem;
print $code;
close STDOUT or die "error closing STDOUT: $!";